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Autopsie d’un courant électrique quantique

Les expériences de physique quantique ont atteint un niveau de
contrôle permettant de préparer avec précision l’état quantique de nom-
breux systèmes physiques. Cela a mené à la naissance de l’optique quan-
tique électronique, un sujet émergent qui vise à préparer, manipuler et
caractériser l’état de courants électriques contenant quelques excitations
électroniques se propageant dans un conducteur quantique ballistique.
Ceci est un défi conséquent qui se heurte à la difficulté de caractériser
un état quantique à N corps.

Le sujet de cette thèse sera le développement de méthodes de trai-
tement du signal quantique permettant d’accéder à une connaissance
partielle d’un tel état pour des courants électriques quantiques. Une pre-
mière méthode consiste à les analyser à nombre d’excitations fixé au
travers des cohérences électroniques. Pour cela, nous élaborons une ana-
lyse de la cohérence à un électron en termes d’« atomes de signaux »
électroniques. En combinant cela au protocole de tomographie par inter-
férometrie HOM, nous présentons la première autopsie, fonction d’onde
par fonction d’onde, d’un courant électrique quantique.

Une autre approche consiste à examiner des indicateurs sondant di-
rectement l’état à N corps. Nous étudions le rayonnement émis par un
conducteur quantique ainsi que la décohérence électronique d’une excita-
tion à un électron. Ensuite nous analysons la distribution de probabilité
de la chaleur dissipée par un système quantique mésoscopique. Dans ce
cadre, nous développons une théorie de l’effet Joule en régime quantique
et explorons comment celle-ci pourrait permettre de sonder l’état à N
corps.

Mots clés : optique quantique électronique, traitement du signal quan-
tique, cohérence quantique





Un, deux… ?

Je ne vais pas vous parler des courants électriques quantiques. Disons,
pas tout de suite. L’histoire que j’ai à vous raconter maintenant est bien
plus importante, beaucoup trop importante pour ne pas être évoquée en
premier. Sans elle, les courants électriques quantiques, ils l’auraient sans
doute eu dans le baba. En tout cas, ils se seraient épargnés ce manuscrit
à leur sujet.

En réalité, ce n’est pas vraiment une histoire en soi. Il s’agit plutôt
de remercier les gens qui d’une manière ou d’une autre, ont leur part
de responsabilité dans tout ceci. De leur rendre hommage. D’évoquer
peut-être, quelques souvenirs. Le lecteur doit cependant être prévenu.
La notion de vérité, dans les lignes qui vont suivre, sera volontairement
quelque peu élastique, ce qui rendra sans doute le texte plus amusant.
Je suis également certain d’oublier des gens, qui auraient pourtant tout
à fait leur place dans ces lignes. J’espère qu’ils ne m’en tiendront pas
rigueur.

Les lieux sont importants. Pas tant pour leur emplacement physique
que pour les gens qui les peuplent, leur ambiance, leur odeur. J’ai beau-
coup apprécié le temps passé ces six dernières années à l’ENS de Lyon.
Il y aurait bien des histoires à raconter, encore qu’il vaille mieux que cer-
taines restent relativement confidentielles. Je reviendrai sur ces choses-là
un peu plus tard.

Le dénouement est important. Contrairement au début, qui est tou-
jours brouillon et qu’il est nécessaire de reconstruire, voire de réinventer,
la fin est claire. Parmi les participants, se trouvent bien sûr les membres
du jury. Ceux-ci ont du mérite, et pour plusieurs raisons. Tout d’abord,
le manuscrit devait être compact, un objectif que je ne suis pas certain
d’avoir tenu. Mais chacun en jugera à sa façon. D’autre part, ils sont tous
venus pour la soutenance, pour m’entendre parler de chiens et de chats,
ce à quoi ils ne s’attendaient peut-être pas. Pour tout cela, je souhaite
remercier Janine, Natalia, Patrick ainsi que les rapporteurs, Daniel et
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Serge avec lesquels il aura été un plaisir d’échanger avant et pendant la
soutenance.

Certaines rencontres ayant initialement pour objet les histoires d’élec-
trons uniques et de courants électriques quantiques ont été marquantes.
Parfois pour moi, parfois pour les autres. Peut-être plus souvent pour les
autres. Salutations à vous, Thierry, Jérôme et Thibaut. Plus au nord, à
Paris, se trouve l’agence tout risque de la physique expérimentale des
électrons uniques. Un grand merci à Gwendal pour son accueil toujours
chaleureux, malgré ce que l’on pourra faire passer pour un choc culturel
entre les parisiens et les gens des régions. Merci également au reste de
l’équipe, Bernard, Jean-Marc, Erwann, Arthur, Rémi, Hugo et Mano-
har, ainsi qu’à Takis et à Christophe qui se sont parfois joints à nos
discussions. Les passages à Paris étaient toujours un plaisir, malgré l’aug-
mentation des actions UPSA qui en résultait généralement. Je voudrais
également remercier Inès, à la fois pour sa vision originale du transport
électronique et pour son partage de quelques pans de culture Soufi.

Une autre rencontre mémorable fut celle de Misha. J’ai découvert
que j’aimais les discussions de physique animées. S’engueuler devant
un tableau peut sembler un spectable un peu baroque, voire carrément
comique. Je crois qu’en fait, à chaque fois que cela est arrivé, une idée est
sortie de la discussion, de manière incroyablement rapide. J’ai également
beaucoup apprécié nos échanges, plus calmes, au-delà de la physique.

Il est temps de revenir à Lyon. Le laboratoire de physique a été
véritablement un endroit fantastique, notamment pour la liberté qu’il y
règne. Pascal a été en partie responsable de cette liberté. Je suis certain
qu’être mon directeur de thèse n’a pas dû être de tout repos. Ou, disons
plutôt que cela a été riche en émotions. J’ai pu toutefois noter une certaine
exagération dans les propos de Pascal, tout n’étant pas à prendre au pied
de la lettre. Je l’ai souvent entendu dire que je lui aurais tout fait. Cela
arrivait à chaque fois que j’inventais une solution nouvelle à un problème
non existant jusqu’alors. Je pondererais cela par le fait que je n’ai jamais
pu finir mon projet de réacteur fusée à base de péroxyde d’hydrogène. Le
principal problème étant le manque d’équipements pour la purification
de l’eau oxygénée, son bureau n’étant manifestement pas équipé pour.
Cela viendra.

Pendant ces trois années de thèse, j’ai partagé un petit bureau sans
prétention avec Alexandre. Je crois que nous nous accorderons pour dire
que nous y avons ajouté notre touche personnelle, installé une certaine
ambiance. Il faut dire qu’Alex a une capacité impressionnante à faire
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bouger les choses. Cela s’est souvent traduit par l’invention de projets
farfelus qu’il fallait absolument finir en des temps impossibles, mais
parfois, par souci de simplicité sans doute, il faisait simplement bouger
les murs de notre bureau. Je tiens d’ailleurs à remercier nos voisins de
couloir, et l’ensemble de l’équipe théorie, pour son calme et sa patience.

Afin de garder un certain équilibre, il nous fallait quelqu’un de
raisonnable, quelqu’un qui a les pieds sur Terre, quelqu’un de posé.
Clément était parfait dans ce rôle. Je ne pense pas trop m’avancer
en disant qu’il en a probablement vu de toutes les couleurs, si ce n’est
l’ensemble du spectre électromagnétique, pendant le temps que nous
avons passés ensemble. J’ose croire néanmoins qu’il s’est amusé autant
que moi.

Parmi les gens qui sont passés au laboratoire, je ne suis pas le seul à
avoir éprouvé la joie de travailler avec Pascal, joie parfois accompagnée
d’un certain désarroi. Je pense notamment à Arnaud et à Charles, qui
ont pu découvrir l’animation que notre petit groupe pouvait causer une
fois réuni dans un même bureau. Ils n’ont cependant pas trop eu à subir
les discussions de physique, contrairement à Étienne, Dario, Manu et
Raphaël. Parmi ces derniers, Manu a eu le mérite de me supporter lors
de son stage, ce qui a visiblement eu pour conséquence de l’éloigner
durablement de la physique théorique.

Outre la liberté, l’autre élément que j’ai apprécié au laboratoire de
physique a été la diversité thématique. Ainsi, si vous en avez marre des
théoriciens extravagants, il est toujours possible de faire quelques mètres
pour retrouver un pragmatisme relatif avec les gens qui étudient la
physique des choses qui se voient. Je me suis quelque peu éternisé au café
avec, entre autre, Marius, Sylvain, Éric, Stéphane, Sébastien et Caroline.
Je les remercie d’avoir gardé ma productivité raisonnable, et je pense que
Pascal les remercie de m’avoir gardé tout court. Je remercie également
Thierry, pour ses bons mots ainsi que pour l’entrain qu’il communique
au laboratoire. Par ailleurs, je serais bien mal placé pour avoir quoi que
ce soit contre l’extravagance des théoriciens. Je me suis beaucoup amusé
avec Michel, sans doute l’un des plus extravagants qu’il m’ait été donné
de croiser. Il est en effet rare de pouvoir discuter d’idées complètement
absurdes de manière extrêmement sérieuse. Je tiens également à remercier
Pierre, pour sa gentillesse ainsi que Marc, pour sa gestion de la dame
de l’accueil à un moment critique. J’espère également que Jean-Michel
ne nous en voudra pas trop pour l’épisode de désinsectisation que nous
avons déclenché.
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Un temps important est celui du repas. Notre petit groupe de théori-
ciens les partageait en général avec Guilhem, Grimaud et plus récemment
Félix. Cette diversité thématique amenait en général des discussions phi-
losophiques de haute volée. En vérité, vous ne voulez pas connaître les
détails. Toujours est-il que j’ai passé du bon temps grâce à eux également.

Il est temps que ces remerciements s’achèvent, afin de laisser place
aux électrons. Je n’ai néanmoins pas encore mentionné les véritables
héros. Mes parents, Irène, Jean, ont un énorme mérite. Ils m’ont supporté,
à temps plein, durant de longues années, et je ne crois pas que cela
aura toujours été facile. Je ne pourrai jamais les remercier assez, pour
la créativité qu’ils m’ont laissé développer, ainsi que l’inspiration qu’ils
m’auront donnée. Je dois aussi remercier Bryan, mais surtout Vincent,
que j’aurai fait souffrir jusqu’au bout de ce manuscrit. Il y avait en effet
assez peu de gens désireux de relire quelques centaines de page d’anglais
durant un week-end. Fort heureusement la fin de ce manuscrit n’a pas
marqué la fin des souffrances, et il nous reste, je l’espère, des tas de
choses à faire.

Cette fois-ci, j’ai véritablement fini. Laissons donc place à la physique
quantique, aux électrons, etc.
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Introduction

It is hard to imagine our world as it is today without the advent of
quantum mechanics. Since its discovery, quantum mechanics has made
its way into almost all everyday technologies. Lasers, computers, camera
sensors and solar cells, to give a few examples, were enabled by our
understanding of the quantum laws of Nature. These technologies are
all children of the so-called “first quantum revolution” that followed
the unraveling of quantum mechanics. However, they didn’t make use
of the full power of quantum physics. They are mainly based on the
particle/wave duality at the single-particle level which is far narrower
than the full promises of quantum physics. As we build more precise,
faster devices, we hit limits in measurement precision due to quantum
mechanics, the so-called standard quantum limit. At the same time,
simulating quantum systems with classical computers is an extraordinary
challenge when considering systems involving hundreds of particles.

All these considerations initiated a new trend at the end of the 20th
century, in which we try to harness quantum mechanics at the funda-
mental level and to its full extent, to circumvent the limitations of first
quantum revolution technologies. This marks the “second quantum revo-
lution” [Dowling and Milburn, 2003] which combines both technological
developments, the emergence of new fields such as quantum informa-
tion and communication and, in my opinion, a deeper understanding of
quantum mechanics. The common characteristic of these new quantum
technologies is that they actively use the full realm of quantum states,
especially the ones that cannot be interpreted in classical terms, such as
squeezed or entangled states. This encompasses the fields of quantum
simulation [Feynman, 1982] but also of quantum computation, quantum
sensing and quantum metrology. A recent example of these new quantum
technologies is the use of squeezed light to increase the sensitivity of the
LIGO interferometers [Aasi et al., 2013].

These technologies require mastering generation, manipulation as

13



14 INTRODUCTION

well as characterization of quantum states. The latter task, often called
quantum tomography is indeed difficult to achieve, because information
carried by quantum states is very peculiar. In a way, it is robust since
it cannot be erased [Pati and Braunstein, 2000], but it is also very
fragile because it cannot be cloned [Wootters and Zurek, 1982]. As
a consequence, it can only be retrieved through statistics performed
on a large number of realizations of the quantum state. Moreover, in
many experiments, the system is not observed directly but through the
imprints it leaves within its environment, which can be for example a
propagating electromagnetic mode in a circuit QED experiment [Wallraff
et al., 2004; Bianchetti et al., 2009] or a stream of atoms flying across a
cavity in atomic physics experiments performed by Guerlin et al. [2007].
This immediately raises the question of the recovery of the information
carried by quantum states from measurements.

This very broad question has been studied for a long time [Breuer
and Petruccione, 2007; Wiseman, 2014; Haroche and Raimond, 2006].
But it finds a new echo in the development of multimode quantum optics
and, as I will explain, quantum coherent nanoelectronics. The progress
of quantum communication, and more generally of quantum information
processing as well as advanced sensing technologies, brings the necessity
to be able to process signals that carry quantum information instead
of classical information as it was common in technological devices born
from the first quantum revolution. The evolution of electronics, radar
and telecommunication technologies have catalyzed the development of
classical information theory [Shannon and Weaver, 1975] as well as of
signal processing. In its broadest acceptance, signal processing is an
enabling technology that aims at processing, transferring and retrieving
information carried in various physical formats called “signals” [Moura,
2009]. Signal processing involves a huge arsenal of techniques to detect,
filter, represent, transmit, and finally extract information or recognize
patterns within signals.

I think that quantum technologies require the development of a new
type of signal processing, that is quantum signal processing directly
operating on quantum signals themselves. This thesis will indeed deal
with these questions: what are quantum signals? How to access and
process quantum signals to extract significant information from them?

These questions are at the heart of the field of multimode photon
quantum optics. It is now possible to generate multimode quantum
states, featuring entanglement, in a rather controlled way. Yet, the
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characterization of photonic beams and more generally of quantum
particle beams, is a hard task. Of course, in general it is not possible to
perform a full reconstruction of the quantum many-body state because
the Hilbert space is too large. The solution is then to study partial
indicators suitable for the considered problem that will give relevant
information about the quantum properties of the beam. In the same way,
and this is how the general idea of this thesis emerged, the development
of quantum coherent nanoelectronics gives rise to a very similar question:
how can we characterize a quantum electrical current?

This question is indeed a very natural one to ask in electron quantum
optics [Bocquillon et al., 2014], an emerging field that aims at gener-
ating, manipulating and characterizing the elementary excitations of
the electronic fluid in ballistic conductors using, in particular, single- to
few-electron sources. Electron quantum optics has a strong relevance
for condensed-matter physics since it enables us to realize gedanken ex-
periments such as probing the fate of a single-electron excitation in a
quantum conductor under the influence of Coulomb interactions [Mar-
guerite et al., 2016b]. There is hope that it may provide new probes
for strongly-correlated phases such as fractional quantum Hall fluids or
superconductors and for the edge channels of topological insulators as
reviewed in [Ferraro et al., 2017].

Nevertheless, I have given this thesis a different perspective more
connected to quantum information, a topic of strong interest for me. My
discussion of electron quantum optics will therefore be focused on the
different ways we can obtain and process knowledge about the state of
the electron fluid propagating within ballistic quantum conductors, with
a specific focus on quantum Hall edge channels.

There are several roads towards analyzing a quantum electrical current
or a quantum light beam. Historically, the first one is to probe the beam
at the level of one mode, then two, etc. This is achieved through the
concept of quantum coherence introduced by Glauber [1963b]. There is a
whole hierarchy of coherences, each one giving all the possible correlations
between the number of particles in a given number of modes. We will
follow this road in the first two chapters of this thesis, focusing on the
first members of this hierarchy in electron quantum optics.

In chapter 1, I will present the domain of electron quantum optics
by insisting on the comparison with optics. After introducing experi-
mental elements, I will describe the main theoretical tools we will use
throughout this manuscript, replacing them within a global perspective
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common to optics. I will then focus on first-order coherences, containing
single-particle physics as well as second-order coherences that contain
two-particle physics and as such, Fermi statistics and two-particle en-
tanglement. I will then introduce recent experimental results on the
tomography of single-electron coherence. For this part, most of the the-
oretical framework was laid down by my predecessors [Grenier, 2011;
Thibierge, 2015]. However, I think the presentation is quite new and
original and paves the way to the work described in the next chapters. It
also delivers two important messages for the quantum signal perspective
discussed in this introduction and which we have elaborated in [Roussel
et al., 2017].

The first message is that quantum optics coherences and their exten-
sions (amplitude and pair amplitude) are the quantum signals of interest
and can be accessed through quantum interference experiments in elec-
tron quantum optics. The second message is that quantum interferom-
eters are nothing but on-chip analog quantum signal processors. They
realize simple transforms on quantum signals (such as “linear filtering” or
“overlaps”), encoding them into experimentally accessible quantities such
as average current or low-frequency noise. This gives more substance to
Landauer’s aphorism: The noise is the signal [Landauer, 1998].

Quantum signals being quantum objects defined from a set of in-
distinguishable particles or from a quantum field, it would be highly
desirable to represent them in a simple intuitive way. In chapter 2, I
will introduce a new representation of first-order electron coherence in
terms of elementary electronic wavefunctions [Roussel et al.], which is
directly inspired by a discussion of photonic modes propagating along
a transmission line in Devoret’s lectures at Collège de France [Devoret,
2008]. This kind of decomposition has been done recently in [Vanević
et al., 2007, 2016, 2017] in the specific case of a classical current but so
far, this pioneering work was not developed within the general framework
of electron quantum optics and in the perspective of quantum signal
processing.

My contribution, which will be detailed in a specific paper under
completion, has been to invent and implement a general signal-processing
technique for analyzing any time-periodic single-electron coherence, al-
lowing to perform an autopsy of any time-periodic quantum electrical
current at the single-particle level, without any extra hypothesis. I will
show how, within the framework of Floquet theory, this method can
be used to assess quality of single-electron sources and to extract re-



INTRODUCTION 17

alistic single-electron wavefunctions for decoherence studies. Finally I
will present our joint work with G. Fève’s team [Marguerite et al., 2017]
which consists in the demonstration of a quantum current analyzer ex-
tracting from the first time single-electron wavefunctions present within
a quantum electrical current, their emission probabilities and their co-
herence properties.

As will be clear to all experimentalists working on electron quantum
optics, probing second-order electronic coherence already represents a
formidable challenge. This motivates us to explore the second road for
quantum signal processing of quantum electrical currents.

The idea is to look for quantities that gather information about higher-
order coherences and/or multimode quantum correlations in a nutshell.
The coherences properties of the electromagnetic radiation emitted by a
quantum electrical current provide a first step in this direction. Another
more exploratory possibility is to look at the statistical properties of the
heat dissipated by a quantum electrical current due to its coupling to
environmental degrees of freedom.

This is why chapter 3 will be devoted to studying the influence of the
coupling of a quantum electrical current to its environment, in particular
electromagnetic. This will enable us to connect electron quantum optics
to photon quantum optics through the radiation emitted by a quantum
electrical current, a problem that has attracted a strong attention [Zakka-
Bajjani et al., 2007, 2010; Grimsmo et al., 2015; Virally et al., 2016;
Thibaut et al., 2015; Gasse et al., 2013; Forgues et al., 2014; Mendes and
Mora, 2015; Hofheinz et al., 2011] in the mesoscopic physics community
since the prediction that a quantum conductor would radiate a non-
classical radiation by Beenakker and Schomerus [2001, 2004].

In quantum Hall edge channel, the possibility to describe the state
of bosonic degrees of freedom that are charge density waves at the
edge of the sample (also called edge magnetoplasmons) is crucial. This
description called bosonization can be used to make bridges between
electron quantum optics and microwave quantum optics. It also enables
us to treat Coulomb interactions in a non-perturbative way. In chapter 3,
I will introduce this technique and discuss the connection between electron
and photon quantum optics. I will also discuss the problem of single-
electron coherence which was my entry point in the field during my
physics Master. At this time, together with C. Cabart, D. Ferraro and
P. Degiovanni, we have computed the decoherence of an arbitrary single-
electron excitation propagating along a quantum Hall edge channel. To



18 INTRODUCTION

obtain explicit results, I have developed a code that is able to compute
the post-interaction single-electron coherence for any input single-electron
wavepacket propagating in an interacting region. This description is valid
for any reasonable capacitive interaction model. In [Ferraro et al., 2014b],
we have compared the death of Levitov and Landau quasiparticles and
shed light on the role of many-body decoherence by making an analogy
with decoherence observed in cavity QED experiments by Guerlin et al.
[2007]. In parallel, Wahl et al. [2014] had developed another method
to compute experimentally-relevant quantities at non-zero temperature,
although their method is restricted to one interaction model. This led to
a comparison between both theoretical methods and the experiment in
[Marguerite et al., 2016b]. In chapter 3, I will also summarize all these
works and give an insight on the further explorations led by C. Cabart in
a paper also under completion, in which I participate. These explorations
focus on the case of ideal ν = 1 edge channels in which many-body
decoherence is not present, and on decoherence control by a careful
sample design.

Finally, in the last chapter, I will explore the second road to quantum
signal analysis by considering energy transfers in quantum mesoscopic
systems. Originally, this arose from my own interest for quantum ther-
modynamics. I am not sure to have fully understood what quantum
thermodynamics is and even if it really makes sense but energy tranfers
may provide a way to look at the many-body coherence properties of
a quantum electrical current. In this last chapter, I will also present a
framework based on Feynman path integral suitable for exploring quan-
tum trajectories in full generality and more precisely the ones associated
with a monitoring of heat transfer with a thermal reservoir. A scattering
theory approach that allows us to bypass the explicit computation of
Feynman path integral, will then be used to develop a theory of Joule
heating by quantum electrical current. This work is still under develop-
ment.

Last but not least, during my PhD, I was also interested in foundations
of quantum physics and its relations to computation and information
theory. I am sure that these questions have heavily influenced my
questionings that led to my research, my approach to the problems and
finally the present manuscript. I won’t give too many details on these
questions here but I would like to mention that this work, which has
been done in collaboration with P. Degiovanni, N. Portier, C. Cabart
and A. Feller will lead to a book [Degiovanni et al., shed], that should
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be published in 2018. The goal of this book is to shed some light on
the nature of the quantum theory using the teachings of the recent
developements in quantum information theory, quantum computing and
in the manipulation of single quantum systems. Can quantum theory
provide a description of the whole physical world? And if yes, what
would be the implications?

A central point in this book is the role played by entanglement in
relating quantum mechanics to information theory and computational
complexity theory. Developing decoherence theory and its extensions, we
also discuss how the classical reality we are accustomed to can indeed
emerge from a fully quantum universe. An even more striking consequence
of quantum theory is that the quantum state of the system is not objective,
but rather relative to the system, as originally stated by Everett [1957b,a],
or more recently by Rovelli [1996] and by Auffèves and Grangier [2015].
This is probably, in a sense, the major rupture introduced by quantum
theory, a point often overlooked in textbooks. Actually, this is quite
natural since quantum theory encapsulates the fact that no information
is accessible without any disturbance because, as Landauer would say,
information can only be processed or transmitted through a physical
process [Landauer, 1991, 1996]. The relative or relational nature of the
quantum theory leads us to draw a parallel between general relativity,
where space and time are relative to an observer and what is called space
time is usually reconstructed from a computation as we are all used to
with the GPS. We conclude by discussing some of the conceptual issues
behind the marriage between quantum mechanics and general relativity.



20 INTRODUCTION



Chapter 1

Electron quantum optics

1.1 Scientific context and motivation

Quantum transport is a central topic of mesoscopic physics that deals with
electronic transport in a regime where the effects of quantum mechanics
cannot be neglected. The semi-classical image mixing a Drude model of
electronic transport supplemented by parameters such as effective masses
or collision times deduced from quantum mechanics is no longer valid.
In quantum transport, the wave nature of electrons cannot be ignored:
transport is influenced by electronic phase coherence. This requires
that the inelastic scattering length lϕ which characterizes the distance
over which an electron can propagate without experiencing an inelastic
collision and thus randomization of its phase, is of the order or larger
than the sample size L. Quantum conductors became experimentally
accessible in the 80s: the first evidence global phase coherence over a
whole conductor came with the observation of permanent currents in
normal metal rings [Sharvin and Sharvin, 1981; Webb et al., 1985] and
of universal conductance fluctuations [Washburn et al., 1985].

Two regimes of coherent electronic transport are considered: the most
common one, in which static impurities introduce elastic scattering over
distances le � L is called the diffusive transport and bears a strong
analogy with wave propagation in disordered media [Montambaux, 2004].
This alters the electronic transport by introducing the so-called weak
localization correction and universal fluctuations of the conductance.

The other regime is the ballistic transport regime in which the elastic
scattering length is significantly larger than the sample size. Electrons
then propagate within the quantum conductor as waves in a waveguide.

21
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This has inspired R. Landauer [Landauer and Büttiker, 1985; Landauer,
1989] and then later M. Büttiker [Büttiker et al., 1985; Büttiker, 1986;
Büttiker, 1990] and Th. Martin [Martin and Landauer, 1992], and many
others to develop a scattering approach to quantum transport in which
a quantum conductor is seen as a scatterer, thus already using a strong
analogy with optics. In this paradigm, a quantum conductor appears as
a linear optics element for quantum electronic waves.

Dealing with electronic waves instead of a particle flow implies that
the usual impedance composition laws are expected to be violated: inter-
ference effects in non-simply connected quantum conductors break the
conductance addition formula whereas the impedance addition breaks
down since, almost by definition, it makes no sense to split a quantum
conductor into two parts.

However, this is far from being the whole story. First of all, as
M. Büttiker himself remarked, the scattering theory approach to electri-
cal transport assumed that electron interactions could be neglected, a
natural idea within the line of thought of the Landau–Fermi liquid theory
[Pines and Nozières, 1966]. But this approximation breaks down when
considering finite-frequency transport: Coulomb interactions must be
taken into account to describe electrical transport. To describe quantum
transport at finite frequency, Buttiker, Prêtre and Thomas [Büttiker
et al., 1993; Prêtre et al., 1996] have developped a mean field theory ap-
proach in which the time-dependent flow of electrons generates a classical
electrical field within the conductor which alters its scattering properties.
At the microscopic level, during its propagation within a conductor, an
electron interacts with the others through Coulomb interactions. This
leads to the generation of electron/hole pairs from the Fermi sea. Using
an analogy with optics, Coulomb interactions turn a quantum conductor
into a non-linear optics element.

This image is still not the end of the story since electrons within a
quantum conductor also interact with the electromagnetic environment
of the conductor itself. One would naively think of the electromagnetic
field in the surrounding space but the quantum conductor is always
connected to reservoirs through leads and cables: the electromagnetic
environment also includes the collective modes of the surrounding circuit.
In Büttiker, Prêtre and Thomas’s approach to high-frequency quantum
transport, it was assumed that the electrons within the conductor just
felt a modified potential landscape generated by the average electronic
density within the conductor.
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But under certain circumstances, this simple classical mean field image
is not sufficient. One has to take into account the fact that the potential
seen by electrons within the conductor comes from the coupling to the
external environment of the conductor and therefore exhibits quantum
fluctuations. Another way to present it consists in saying that individual
passing of electrons within the conductor will alter its electromagnetic
environment and this could be seen on quantum transport properties.
This effect is called the dynamical Coulomb blockade [Devoret et al., 1990;
Girvin et al., 1990]. Moreover, electronic transport across a quantum
conductor leads to quantum radiation within its environment: this is the
bright side of dynamical Coulomb blockade [Hofheinz et al., 2011].

Until a decade ago, quantum electronics relied on sources such as
batteries, a.c. and advanced waveform generators, that send streams of
electrons in which no quasi-particle could be singularized. Therefore,
with such sources, even ballistic quantum transport is a complicated
many-body problem from the start. Of course this has not prevented
the mesoscopic physics community from getting quite a detailed under-
standing for it but at the price of a rather complicated formalism (see
for example [Abrikosov et al., 1963; Caroli et al., 1971; Fisher and Lee,
1981; Meir and Wingreen, 1992]) and of overlooking the analogy with
optics that we have stressed.

Things changed when technological progress made it possible to
access the 1 GHz to 100 GHz frequency range in quantum transport
experiments [Gabelli et al., 2006]. This allowed to probe the dynamical
timescales of the quantum conductor itself such as the electronic ballistic
time of flight across the conductor1. In 2007, a source able to inject
coherent single-electron excitations within a quantum Hall edge channel
was demonstrated [Fève et al., 2007]. This opened a new era for quantum
electronics based on the study of quantum electrical currents carrying
one to few electronic excitations per period.

The hope was then to study quantum transport using these sources
exactly as in quantum optics experiments with single-photon sources. In
this sense, this breakthrough shed a strong light on the analogy between
quantum electronics and photon quantum optics.

Quantum optics is an old field started in the 60s that has reached
a maturity level where it is now possible to generate, manipulate and
probe states of the quantum electromagnetic field involving one to few

1. Typically of the order of tens to hundreds of pico-seconds for a micrometer-long
ballistic conductor.
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photons per mode or even spread over multiple modes. The degree of
control reached in photon quantum optics, both in the microwave and
in the optical domain makes photon quantum optics a very promising
platform for exploring quantum phenomena [Haroche and Raimond, 2006].
Potential applications range from quantum computation [Knill et al.,
2001], quantum communication [Reiserer and Rempe, 2015; Braunstein
and van Loock, 2005; Scarani et al., 2009] to the quantum simulation of
more complicated physical systems [Le Hur et al., 2016].

Since, at least in principle, electron quantum optics aims at reaching
a high degree of control on the quantum states of the electron fluid in
a quantum conductor, it is based on the same experimental tools and
theoretical paradigms than photon quantum optics. The main objective
of this chapter is to introduce them, starting from experimental tools
such as electronic sources and interferometers, and then moving forward
to the theoretical concepts inspired by quantum optics now used for
studying electronic states and quantum transport. We will finally close
this chapter by presenting various protocols for measuring single- and
two-electron coherences. But before going into this, let us explain why,
although these fields of quantum transport and photon quantum optics
are to some extent unified by this approach, their respective goals are
not the same as of today.

Photonic systems are by nature and construction very clean because
photons do not interact with each other. Actually, they are so clean that
the main difficulty is to make photons interact strongly enough through
a clever use of light–matter interaction. On one hand, the cleanliness
of photonic systems allows to transmit quantum states over hundreds
of kilometers (see [Vallone et al., 2015; Yin et al., 2017] for spectacular
examples), making photons a platform of choice for quantum information
and communication protocols. On the other hand, the level of control
on light–matter interaction is now so good that, in some system, it is
possible to generate interesting collective photonic states [Hofheinz et al.,
2009].

By comparison, electronic systems are much more messy as could be
expected from our presentation of quantum transport. There are two
major, fundamental differences between electron and photon quantum
optics. First, electrons are fermions and not bosons. This difference in
statistics is, per itself, quite drastic. It first implies that, given a set of
modes, there are way much less accessible fermionic states than bosonic
states. In particular, there is no direct counterpart of the classical
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limit that leads to classical electromagnetism. Another consequence of
Fermi statistics is that the ground state in a metal, the Fermi sea, is
filled with a huge number of electrons, making it much richer than the
photonic vacuum. The second difference is that electrons are charged,
and interact through long-ranged Coulomb interaction. Combined with
the fact that even in the ground state, an electron possesses a lot of peers
to interact with, Coulomb interactions lead to a collective, strongly non-
linear dynamics. Electronic propagation is strongly influenced by inelastic
collisions which lead to strong electronic decoherence. To summarize this
last difference in a language that may be familiar to opticians:

• In photon quantum optics, ballistic propagation and linear optics
components are quite common. An experimental and/or engineer-
ing challenge in quantum state manipulation and control is to
induce strong non-linearities.

• In electron quantum optics, Coulomb interactions turn most ballis-
tic quantum conductors into non-linear optics components. Under-
standing and controling these non-linearities is both a challenge for
further applications and basic condensed matter physics (electronic
decoherence).

Therefore, in my opinion, although there were proposals in this
direction [Bertoni et al., 2000; Ionicioiu et al., 2001; Ionicioiu, 2006;
Bertoni, 2007; Zibold and Vogl, 2007], the main objective of electron
quantum optics is, in the present state of technology, not to provide a
reliable powerful platform for quantum computation or communication
along these lines but to probe the complex, rich, many-body dynamics
induced by Coulomb interactions, using elementary excitations so that we
can gain an insight into the emergence of collective quantum correlations
in the electronic fluid. An electrical engineer would say that electron
quantum optics is a platform for exploring high-frequency electronic
transport in its ultimate regime, that is to say at the single-electron
level and when quantum mechanical effects are dominant. Last but not
least, one should not conclude from my statement that the difficulties
mentioned in this introduction do not imply that electron quantum optics
is irrelevant for quantum technologies. I am indeed convinced of the
opposite: even decoherence effects could be used for sensing applications,
maybe quantum metrology and electron quantum optics may also be very
relevant for building new photon sources and detectors in the microwave
regime. And we should not close the door to unforeseen developments of
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electron quantum optics systems in which electronic coherence would be
preserved over a larger distance than in AsGa/AsGaAl quantum Hall
systems.

1.2 Building blocks of electron quantum optics

1.2.1 Transmission channels

Quantum optics experiments rely on the fact that, during photon propa-
gation, interaction with matter occurs in a very controlled way, through
lenses and mirrors which have been specifically manufactured and within
samples where light/matter interaction is probed. In a quantum transport
language, quantum optics deals with ballistic photon propagation most
of the time, except in specifically engineered devices. This explains why
the concepts and paradigms of quantum optics find their best incarnation
within ballistic quantum conductors. Only they provide a medium for
electronic propagation minimizing unwanted scattering events.

A system of choice for this are 2D electron gases, in which electrons
are confined in two dimensions where they can propagate almost freely.
Such gases are commonly found in high-frequency transistors, found in
microwave devices such as cell phones. They possess a high electronic
mobility, implying a long elastic mean free path for electrons. In tran-
sistors, as well as in experiment involving quality 2D electron gas, the
gas is formed at a 2D semiconductor heterojunction between AsGa and
AsGaAl. At the interface, conduction and valence bands bending create
a triangular well of potential where, provided the temperature is low
enough, electrons are kept in the lowest energy level of the well, keeping
them maximally confined in the direction perpendicular to the interface.
Electrons come from donor atoms that are located 100 nm away from the
electron gas and therefore, the resulting disordered potential is smoother
than in a normal metal. This leads to high mobilities and, at cryogenic
temperatures, electrons can travel more than 20 µm without experiencing
any elastic collisions2. It turns out that scattering is mostly inelastic and
comes at very low temperatures from electron/electron interactions.

The next requirement for electron quantum optics is the practical

2. The elastic mean free path le is related to the mobility of the 2DEG and to the
electronic density: the conductivity is given by σ = nee

2τe/m
∗ = neeµ where m∗ is

the effective mass of conduction electrons and τe the elastic mean free time. This
leads to le = vF τe = m∗µvF /e. The Fermi velocity also depends on the density. Using
µ = 100 m2 V−1 s−1 and vF = 106 m/s and m∗ = 0.067me, we obtain le ' 40 µm.
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ability to conduct electrons from one point to another inside the gas
along controlled optical paths. Quantum wires could be a solution
but these are notoriously difficult to manufacture. A more practical
solution comes from the use of edge channels in quantum Hall systems: at
cryogenic temperatures, in the presence of a strong external perpendicular
magnetic field (typically few teslas), the 2DEG enters the regime of
integer quantum Hall effect [von Klitzing et al., 1980]. In this regime,
the bulk is insulating and conduction is only possible along the edges of
the sample. Furthermore, conductivity is quantized along these edges,
by integer multiples of the inverse of von Klitzing resistance

RK =
h

e2
≈ 25.8 kΩ. (1.1)

The integer multiple corresponds to quantized electronic conduction
channels at the edge of the samples, ν being the number of channels.
The origin of conduction channels can be understood through fig. 1.1.
Due to strong magnetic field B, Landau levels appear and are filled up
to the Fermi level which, in the quantum Hall regime, falls between two
such levels. They are separated by synchrotron energy e ‖B‖ /m∗. Spin
degeneracy is lifted because of the magnetic field by Zeeman splitting.
In the bulk of the sample, it requires a lot of energy to go from one
filled Landau level to an empty one, making the bulk an insulator. At
the edge, however, the confinement potential bends the energy levels
which will then cross Fermi level and excitations can be created at a
vanishing energy cost in the thermodynamic limit, thus making the edge
conducting. The number of channels is equal to the number of levels
that cross Fermi energy which is precisely the number of filled Landau
levels. This number is lowered when the magnetic field, and thus the
synchrotron energy, is raised. Disorder plays an essential role in the
existence of stable plateaus in the magnetic field [Ando et al., 1982;
Halperin, 1982]. At even higher magnetic fields, only the first Landau
level is partly filled but due to Coulomb interactions, the electron fluid
may enter another bulk-insulating phase: this is the fractional quantum
Hall regime discovered by Tsui et al. [1982] (see [Stormer, 1999] for a nice
review), a very interesting strongly correlated phase involving collective
excitations with fractional charge and spin [Laughlin, 1983]. Despite the
interest of this exotic phase, we shall only focus on the integer quantum
Hall regime in this thesis.

As advocated by Büttiker [1988], quantum Hall edge channels play
the role of electronic waveguides. They have several interesting properties.
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Figure 1.1: Origin of conduction channels. On the left, we can see
the Landau levels. For each spin, they are separated by the cyclotron
pulsation ωc. The spin degeneracy is lifted because of the magnetic field,
and initially degenerate Landau levels are separated in energy by the
Zeeman energy ~ωZ . The levels are filled up to chemical potential µ.
At the edge of the samples, the confinement potential bends the levels
upwards. Whereas in the bulk, the conduction is prevented because of
the energy gap, on the edge, we have a metallic behavior. On the right,
we can see the edge channels inside the samples corresponding to the
situation depicted on the left.

First, they are chiral which means that electronic excitations experience
no backscattering. Second, the number of channels can be tuned by
changing the external magnetic field, making it a platform of choice for
exploring different situations. Third, for excitations nearby Fermi energy
they possess linear dispersion relation, which emphasizes the analogy
with photon propagation. In this thesis, we will focus on low-energy
excitations, and thus always consider a linear dispersion relation. Finally,
interchannel tunnelling of electrons happens only over large propagation
lengths (typically several hundreds of micrometers) so that edge channels
can, in a first approximation, be viewed as independent channels for
electronic waves. To be more specific, since at ν = 2, the two channels
are spin polarized, inter-channel tunneling requires a spin flip which
is a rare event by sample design. At ν = 3, two channels will possess
the same polarization but the Fermi velocity is not the same in these
two channels [Kumada et al., 2011], preventing tunneling events from
happening due to energy and momentum conservation.

The number of edge channels might seem a detail right now. But we
will see in chapter 3 that it plays a crucial role in understanding Coulomb
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Figure 1.2: Quantum point contact. The quantum point contact is
constituted of two top gates on top of the gas. By polarising the gates
negatively, it is possible to go from a situation in which both channels
goes across the QPC (on the left) to a situation in which both channels
are reflected (on the right). By tuning the voltage, it is possible to find
a regime in which the outer channel is partially reflected and partially
transmitted, realising an electronic beamsplitter.

interaction effects on electrons.

1.2.2 Electronic beamsplitter

Using quantum Hall edge channels, electrons can be guided within the
sample along optical paths which are defined through the engineering of
the 2DEG edge. Interestingly there are two ways of doing this. The first
one is by etching the sample, giving a definitive, static form to the edge
by acting on the confinement potential. But it is also possible to deplete
the gas without touching the sample, by adding a negatively charged
top gate which will repel electrons locally. Its effect can be tuned by
changing the negative d.c. voltage, allowing to shape the 2DEG at will.

This electrostatic repulsion effect is used to create a tunable electronic
beamsplitter. The principle, depicted on fig. 1.2, is to partition the gas
with a negatively charged top gate that will play the role of a “semi
transparent mirror”. Such a device is called a quantum point contact
(QPC) [van Wees et al., 1988; van Houten et al., 1992; van Wees et al.,
1991]. It is possible to change the potential of the gate from a situation
in which edge channels follow the edge of the sample, to a situation in
which they are completely reflected. In between, it is possible to tune the
gate voltage so that electrons in the outer channel can either be totally
reflected or transmitted by tunnelling. In this regime, it is possible to
tune the transmission of the QPC by changing its potential.

The QPC is thus a crucial tool in electron quantum optics. It plays
the role of an electronic beamsplitter and, as such, will be present in
every electron quantum optics experiment. It is an essential element of
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interferometers but also plays a key role in the source used by G. Fève
at Laboratoire Pierre Aigrain.

1.2.3 Sources

To perform electron quantum optics experiments, we need sources that
can emit simple and well-controlled electronic excitations. All sources
used in experiments are periodic sources. The necessity to be above
thermal noise imposes to go to gigahertz frequencies. A particularly
interesting type of source are single-electron sources that emit exactly
one electron, or exactly one electron and one hole excitation per period.

Classical driving

The simplest electronic source is, obviously, classical driving in which the
electronic fluid is excited by means of a classical voltage generator. Such
sources require a connection between the electron gas and the coaxial
cable powered by a classical voltage generator.

A first possibility is to build an Ohmic contact directly into the
sample. The Ohmic contact is a bulk of metal in contact with the edge
channel. The proximity between the edge channel and the contact makes
them strongly coupled, both by capacitive and tunnelling effects. An
Ohmic contact will thus impose its potential to outgoing electrons and
even add a d.c. part. In the absence of any a.c. excitation applied to it,
the Ohmic contact generates an equilibrium distribution function at its
chemical potential and temperature.

A second possibility is to connect the classical generator to a top
gate, thus creating a capacitive coupling between the generator and the
2DEG [Misiorny et al., 2017]. An important difference with the Ohmic
contact is that it is only possible to transfer a.c. excitations: no electron
tunneling is allowed between the coaxial cable and the 2DEG. Moreover,
depending on the geometry, the frequency dependence of the response of
the fluid can be quite complicated [Grenier, 2011]. Nonetheless, if the
generator sends a single-tone voltage, the Ohmic contact and the top
gate will excite the fluid in the same way, up to a renormalization of the
voltage amplitude.

Leviton source

In general, a classical drive generates a continuous stream of excitations
which are electron/hole pairs and their number has fluctuations. Generi-
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cally, it cannot be a good single-electron source.
However, such a source is very flexible: provided that one possesses

a waveform generator, it is possible to generate a lot of different and
interesting electronic states [Gabelli and Reulet, 2012]. Remarkably,
among all of them, one leads to a stream of single-electron excitations
on top of the Fermi sea as predicted by Levitov et al. [1996]. This is
obtained by driving with a Lorentzian current pulse of duration τ0 and
total charge q = −e such as the average current Vd(t)/RK is given by

i(t) =
q

πτ0

1

1 + (t/τ0)2
. (1.2)

When applying a drive with q = −ne, one obtains an excitation called a
Levitov quasiparticle of charge −ne, or n-Leviton. It is also possible to
have a positive charge q = ne, and in this case, the resulting excitation
is an excitation of charge ne, that we will call here a n-anti-Leviton.
Remarkably, the n-Leviton is a collective excitation obtained by adding
n > 0 electrons in a Slater determinant on top of the Fermi sea [Keeling
et al., 2006; Grenier et al., 2013; Battista et al., 2014]. The n-anti-Leviton
corresponds to the removal of a Slater determinant of n electrons below
the Fermi level. These excitations are time localized around the center
of the Lorentzian pulse. Their energy content is a decaying exponential:
they are localized in energy space close to the Fermi level.

Even more interestingly, a sum of Lorentzian voltage pulses of charge
e or −e will always lead to a state solely composed of electrons and holes.
This allows the creation of periodic sources based on Lorentzian current
pulses which have been demonstrated by the group of D.C. Glattli in a
2DEG at zero magnetic field [Dubois et al., 2013b].

Landau quasi-particle source

Another source, that departs from classical current, is the one used by
G. Fève at Laboratoire Pierre Aigrain [Fève et al., 2007]. Its interest
is that it is able to emit excitations that are significantly away from
the Fermi surface. In this respect, those excitations are called Landau
quasi-particles in electron quantum optics.

To achieve this, we need a device that can raise the energy of electrons
before sending them into the channel. This device is depicted in fig. 1.3.
Its main component is a quantum dot, which is nothing more than an
electronic cavity. Inside this dot, energy levels are discrete, separated
by an energy gap ∆. On top of this dot there is a gate which is used,
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by capacitive coupling, to shift the energy of the levels inside the dot.
Of course, it is also necessary that the dot is somehow connected to
the output channel. This connection is made through a quantum point
contact with tunable transmission D.

D

Vg(t)

Figure 1.3: LPA source. This source is composed by an island (quantum
dot) coupled to the 2DEG through a QPC. The driving is done through
a gate on top of the dot.

The operating cycle is shown on fig. 1.4. The top gate, driven by a
square voltage, is used to lower and raise the energy of electrons abruptly.
This shifts a level initially below the Fermi surface and thus populated
with an electron and brings it above the Fermi level. Then, this electron
tunnels into the output channel, all other electrons being blocked by
the Pauli principle. Once the electron has escaped, we can lower the
dot energy levels. Then, an electron from the edge channel can fill this
empty level, leading to an outgoing hole. When driven periodically, this
device creates an elementary a.c. current where one electron is emitted
during half a period and one hole is emitted for the next half period.
Of course, this idealized vision works when the escape time 1/γe of the
electron is shorter than the half period of the driving. This means that
the dot must be open enough, so that the electron has time to fly into
the channel. On the other hand, the more we open the dot, the wider
the energy levels become. Since it is important to have only one energy
level that goes fully above and below the Fermi surface, there is some
optimal transmission coefficient and voltage amplitude at which we can
do both for a given voltage. To summarize, we expect to recover this
optimal regime when we have the following hierarchy for energies:

hf � ~γe � ∆/2 ' eV. (1.3)

In the case of a square driving, the current associated to a single
electron decays exponentially after the beginning of the emission, because
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Figure 1.4: Operating cycle of the LPA source. By driving the top gate
with a square signal, it is possible to achieve the following cycle. (1)
The voltage is raised, promoting an electron inside the dot on top of the
Fermi sea. (2) The electron escape by tunnel effect. (3) We lower the
voltage, promoting a hole below the Fermi sea. (4) The hole escape by
tunnel effect.

of tunnelling [Mahé et al., 2008]. Conversely, in energy, the excitation
is localized around a chosen energy, with a Lorentzian distribution. By
Heisenberg principle, the more energy-localized the particle is, the longer
the escape time is.

This source is interesting also because it is quite flexible. It is possible
to change the voltage and the transmission of the dot, depending on what
is needed as we will see in chapter 2. First, it is possible to turn it into a
classically driven source, by fully opening the dot. In this case, we are
back to a capacitive coupling between the a.c. generator and the channel.
It is also possible to go to a regime where the electron does not have
enough time to escape and where we can expect strong electron/hole
correlations. We can also change the shape of the driving voltage to
output different wavefunctions in the single-electron regime.

1.2.4 Probes

Besides sources and optical components such as beam splitters, important
components in quantum optics are detectors. In the optical domain, these
are usually avalanche photodiodes which have a typical response time
of a few picoseconds and which can be used to perform photocounting
statistics with single-photon resolution.
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In electron quantum optics, we are dealing with electrical signals in
the low frequency or in the microwave range. Detectors thus belong to
the field of electronics and radio-frequency technology. We thus have to
explain how the relevant signals are collected from the electronic fluid
into a microwave coaxial cable before they are amplified and processed.

Most frequently, to convert the electronic excitations into microwave
radiations, an Ohmic contact is used. We expect it to be a perfect
absorber which will probe the incoming current and convert it into
voltage variations which can then be measured.

Timescales involved when considering single-electron emission (usually
a few tens of picoseconds) are comparable to what is accessible with
state of the art microwave equipment at the time of writing which can
reach 30 ps using cryogenic amplifier with 15 GHz bandwith and a fast
acquisition system. In optics, we deal with single photons arriving with
repetition rates in the megahertz range which are detected with few
picosecond resolutions. The real difference comes when considering the
detection efficiency: whereas one-shot single-photon detections can be
performed with relatively good efficiency, this is not, as of now, the case
with single electrons.

Thus, the main challenge is to find low-frequency quantities that can
nonetheless be used to characterize the electronic fluid. Through homo-
dyning, one can access the average finite-frequency current. The low- and
high-frequeny current-noise measurements have been performed without
homodyning but using lock-in detection techniques, time averaging over
long times around the measurement frequency and this is essential for
getting a high sensitivity.

Noise measurements at gigahertz frequencies are far from being trivial
to perform due to impedance mismatch between the quantum Hall
resistance RK and standard transmission line impedances (50 Ω) [Mahé
et al., 2010]. A key point was to eliminate the noise of the amplifiers by
using an interferometric system [Parmentier et al., 2011].

Tomography experiments which will be described in section 1.6 rely
on low-frequency noise measurement which are performed on a high
impedance to maximize the signal. These measurements are realized at
megahertz frequencies thanks to a tank circuit to eliminate low-frequency
parasitic noise [Freulon, 2014].
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1.3 Quantum optics formalism

What we need on the theoretical side is to identify the correct quantities
that characterize the many-body states of the electronic fluid. In many-
body systems, it is usually impossible to access experimentally — and
even to represent in simple terms — the full density operator of a
many-body system, especially when interactions are present. This raises
the question of finding experimentally-relevant quantities that could be
accessed experimentally capturing partial physically-relevant information
on the many-body state.

For the quantum electromagnetic field, apart from specific situations
such as cavity QED where the full state of one to few electromagnetic
modes can be characterized [Haroche and Raimond, 2006], such quantities
are the quantum optics correlators introduced by Glauber, then completed
by other correlators. They will be discussed in section 1.3.1.

For electronic systems, the analogous quantities are called electronic
coherences. We will present their definition which is inspired from the
analogous concepts of quantum optics in section 1.3.2. The rest of this
chapter will be devoted to clarify what insight the electronic coherences
give on the electronic many-body state and finally how they can be
measured.

But in order to fully motivate the introduction of electron quantum
optics concepts and before looking more precisely at single- and two-
electron coherence, it is useful to make one step back and consider
quantum optics as a whole, independently of the quantum statistics of
the excitations considered. As we shall see, the quantum optics correlation
functions provide a way to probe the physics of the system at the level
of k modes. At the same time, one would like to introduce quantum
information quantities in terms of elementary physical systems such as
qubits or harmonic oscillators. This immediately raises the question of
extracting quantum information quantities from the quantum optical
description of the system. As we shall briefly explain, this relation is far
from being trivial when the system involves fermionic excitations.

1.3.1 Coherences in photon quantum optics

For the quantum electromagnetic field, canonical quantization suggests
to use the electric field operator Eσ(r, t) that corresponds to the real
amplitude of the electric field in the polarization σ. This quantum field
operator can be decomposed into its positive and negative frequency
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parts
Eσ(r, t) = E(−)

σ (r, t) + E(+)
σ (r, t), (1.4)

which respectively correspond to the creation and annihilation of a photon
at position r and time t. From their definition, these operators are related
by Hermitian conjugation:

E(−)
σ (r, t) = E(+)

σ (r, t)†. (1.5)

Classical amplitude of the field

The average 〈E(r, t)〉ρ represents the classical electric field associated
with a given state ρ of the quantum electromagnetic field. This quantity,
which is the real part of

〈
E(+)(r, t)

〉
ρ

is non vanishing for a large class
of pure quantum states of the electromagnetic field and, in particular,
for the coherent states of the quantum electromagnetic field introduced
by Glauber [1963a]. These pure states are in one-to-one correspondence
with the classical configurations of the quantum electromagnetic field.
At a given time t, a coherent state is fully characterized by the average
value of the quantum electromagnetic field 〈E(r)〉 as a function of r. In
the presence of external classical currents, coherent states remain coher-
ent and the corresponding

〈
E(+)(r, t)

〉
ρ

evolves according to Mawxell’s
equations in the presence of a classical current distribution.

Quantum fluctuations of the field

Contrary to what happens in classical electromagnetism, the state of the
quantum electromagnetic field ρ is not fully determined by field average
values. For example, Fock states have a vanishing average electric field
and yet are different from the true vacuum. We thus have to account
for quantum and statistical fluctuations of the electromagnetic field,
the latter being present when ρ is not a projector on a pure quantum
state. This suggests considering higher-order terms which are averages
of products of the E(+)

σ and E(−)
σ fields at different positions and times.

Such a description is, as we shall see, well adapted to experimental
detection schemes available in the laboratory.

As a first step, we consider the fluctuations of the quantum electric
field. They are described by two independent functions of two times and
two positions (the other two being deduced from the hermiticity and the
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commutation relations of the field):〈
E(−)

σ (r2, t2)⊗ E(+)
σ (r1, t1)

〉
, (1.6a)〈

E(+)
σ (r1, t1)⊗ E(+)

σ (r2, t2)
〉
. (1.6b)

First-order coherence The quantity eq. (1.6a) has been introduced
by Glauber and is called the first-order coherence in quantum optics
[Glauber, 1962, 1963b]. Denoted by G(1)

ρ (r1, t1|r2, t2), it is directly related
to photodetection theory. This can be understood at the intuitive level
since we can rewrite

G(1)
ρ (r1, t1|r2, t2) = tr

(
E(+)

σ (r1, t1) ρE(−)
σ (r2, t2)

)
. (1.7)

Remembering that a density operator is a weighted sum of projection
operators onto pure states, this rewriting shows that each pure state
appearing in this expression of ρ has a photon destruction operator
applied to it (E(+)(r1, t1) for the ket side and E(−)(r2, t2) for the bra
side). This corresponds to the action of removing one photon from the
quantum electromagnetic field, which is precisely what a photodetection
does. A pedagogical and rather complete account for the theory of
photodetection can be found in C. Cohen-Tannoudji’s lectures at Collège
de France [Cohen-Tannoudji] as well as in M. Fox’s book [Fox, 2006], or
for French readers, in É. Thibierge’s thesis [Thibierge, 2015]. The main
point is that the probability for a detector initialized in a stationary
state to capture a single photon is, at short times, of the form

P
(1ph)
[0,t] =

∫ t

0
Kd(t1 − t2)G(1)(r, t1|r, t2)dt1dt2, (1.8)

where Kd(t1 − t2) characterizes the detector: it depends on its state
as well as on its physical characteristics (bandwidth, efficiency). In
particular, when Kd(τ) ∼ δ(τ), the detection is time resolved and
we access the instantaneous light intensity which is proportional to
〈E(−)(r, t)E(+)(r, t)〉. On the other hand, when the detection is fre-
quency resolved, Kd(τ) ∼ eiωτ , we directly access this quantity at a given
ω: our detector measures the power spectrum of the radiation.

Pair amplitude The quantity (1.6b) is an indicator of squeezing.
To keep the discussion simple, we shall consider here a single mode
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of the quantum electromagnetic field, described by destruction and
creation operators b and b† satisfying the canonical commutation relations
[b, b†] = 1. Up to constants which are not relevant to the point discussed
here, E(+) is to be assimilated to b and E(−) to b† so that the electric
field E could, up to a constant, be identified with X = (b+ b†)/

√
2.

We can now introduce Xθ = (eiθb+ e−iθb†)/
√
2 which is Hermitian.

In the Fresnel plane defined by (X,P ) where P = i(b† − b)/
√
2, the

observable Xθ corresponds to the coordinate along a rotated axis with
angle θ with respect to X. Then, the quantum fluctuation of Xθ is

(∆Xθ)
2 =

1

2

(
〈b b† + b†b〉

)
− |〈b〉|2 (1.9a)

+
1

2

(
e2iθ [〈b2〉 − 〈b〉2

]
+ h.c.

)
. (1.9b)

Around the point defined by 〈b〉 in the Fresnel plane, θ 7→ (∆Xθ)
2 defines

an ellipsoid describing the scale of the fluctuations of Xθ in direction θ (see
fig. 1.5). The first line does not depend on θ and represent the isotropic
part of these fluctuations. It is the difference between the average of
the quantum energy of the mode and the classical energy which is the
square modulus of the classical amplitude 〈b〉. The θ-dependence which
describes the anisotropy of fluctuations is given by (1.9b). It is vanishing
for coherent states since 〈b2〉 = 〈b〉2 for them.

Many states exhibit anisotropic fluctuations. However, only some
states with anisotropic fluctuations are truly interesting. They possess, for
some values of θ, fluctuations of Xθ smaller than the vacuum fluctuations.
Their potential for metrological applications had been realized very early
[Walls, 1983; Caves, 1981] and they are on the point of being used in
the future upgrades of interferometers for gravitational wave astronomy
[Abadie et al., 2011]. These states are called squeezed states and for
intuitively obvious reasons, cannot be obtained as statistical mixtures of
coherent states and thus cannot be radiated by classical sources alone.
In the optical domain, they have originally been produced using non
linear optics processes [Xiao et al., 1987] and, in the microwave domain,
they now are generated through the use of superconducting quantum
amplifiers [Yurke, 1987; Castellanos-Beltran et al., 2008]. We will come
back on the issue of squeezing in chapter 3 when discussing the properties
of the radiation emitted by a quantum electrical current.
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Figure 1.5: Left panel: ellipsoid of fluctuations for a squeezed state
|S〉 around λ = 〈b〉|S〉. In one of the directions, fluctuations are smaller
than the ones of the vacuum (or of any coherent state). Right panel:
definition of the anisotropy parameter from the ellipsoid of fluctuations.
Starting from the ellipsoid, we build isotropic fluctuations r which span
the same area in the Fresnel plane and define the anisotropy parameter
χ as depicted.

1.3.2 Coherences in electron quantum optics

In electron quantum optics, the situation is quite different from the one
in quantum optics. First of all, electrons are fermions. This implies that
the space of possible quantum states for electrons is more limited than
for bosonic particles because no more than one excitation can be present
within each electronic mode. In electron quantum optics, the electronic
field is described by ψ(x, t) and ψ†(x, t) which respectively annihilate
and create an electron at position x and time t. At equal times, these
operators obey canonical anticommutation relations:

{
ψ(x, t), ψ(x′, t)

}
= 0, (1.10a){

ψ(x, t), ψ†(x′, t)
}
= δ(x− x′)1. (1.10b)

Note that in this thesis, we shall consider only one-dimensional chiral edge
channels with a linear dispersion relation. In a region where interactions
can be neglected, the time dependence of ψ and ψ† is given by chiral
propagation with a linear dispersion relation at the Fermi velocity vF . In
1D systems, one usually focuses on effective long-wavelength fermionic
fields, taking into account the Fermi momentum and energy dependence
through a suitable prefactor (see section 4.3 for a detailed discussion).
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Superselection rules

By analogy with photons, the first quantity we could think of is the
“amplitude of the electronic field”:

〈ψ(x, t)〉ρ . (1.11)

This quantity is non-vanishing only in the presence of a quantum su-
perposition between the presence and the absence of an electron. Since
electrons are charged particles, it would be a quantum superposition of
charge 0 and −e. However, such superpositions are never observed in a
metallic conductor. Let us comment on this assertion starting from an
empirical discussion of quantum electrical circuits.

A first idea to generate such a superposition would be to use the
quantum delocalization of a single electron from one conductor to another
to which it is connected via a tunnel junction. However, this would not
lead to a superposition of states with different charge for the first conduc-
tor because tracing over the degrees of freedom of the other conductor
would kill interferences between states of different charge. Interestingly,
superconductors behave differently: when a small superconductor is con-
nected to a large superconducting reservoir via a Josephson junction, it is
possible to observe superposition of charges involving different numbers
of Cooper pairs. This is due to the existence of a macroscopic BCS state
which, in the thermodynamic limit, is characterized by a superconduct-
ing phase.

The general rule, common to superconductors and metal thus concerns
parity: superpositions of states involving charges Q having different
parities in units of e seem to be forbidden. Such a rule which restricts
the physical states of a quantum system is called a superselection rule.
In the present case, it is a parity superselection rule: states involving a
superposition of electrons with different parities seem to be absent in the
lab.

An important question is to determine whether such a superselection
rule has a fundamental origin or arises dynamically. A superselection
rule can emerge dynamically from decoherence through a mechanism
called einselection, which means environmentally induced selection [Zurek,
1982]. In the case of charge degrees of freedom, superselection could
arise from the electromagnetic degrees of freedom to which charge and
currents are coupled: states with different charge may leave different
imprints in their electromagnetic environment, thus suppressing effec-
tively interferences between them. This example suggests that, by proper
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shielding, the superselection rule could be bypassed. Nevertheless, the
parity superselection rule that prevents any superposition of states with
different parities for the number of electrons seems to be enforced. This
suggests to look for a more fundamental origin of this superselection rule.

Historically, the term superselection rule was coined by Wick, Wight
and Wigner in the old days of quantum field theory [Wick et al., 1952].
The parity superselection rule is deeply connected to the spin/statistics
theorem which states that fermionic quantum fields have half-integer
spin whereas bosonic fields have integer spins [Pauli, 1940]. If we require
physical states to be exactly invariant under 2π rotations, then superpo-
sitions of states involving different parities for the number of excitations
with respect to the vacuum are effectively forbidden. The point is that a
2π rotation would change the relative phase between odd and even num-
ber states by π. If the relative phase between the even- and odd-number
components of the state could be accessed, which assumes that there
exists a physical device able to probe it, then this would contradict the
physical impossibility to distinguish a 2π rotation from doing nothing.
Consequently, for the theory to be consistent with this fact, there must
be no way to observe a quantum superposition between the even and
odd sectors of the Hilbert space and thus, the parity superselection rule
does apply.

This argument being based on the spin/statistics connection, it relies
on Lorentz invariance and, as such, is relevant for justifying the parity
superselection rules for fundamental fields. However, in condensed matter
systems, we often work with effective fields that are not directly the
microscopic fields describing all the electrons present in matter. A recent
comment by Johansson [2016] on a paper by Friis [2016] presents an
argument in favor of the parity superselection rule that appeals to no-
signaling instead of Lorentz invariance.

The bottom line of this discussion is the full relevance of the parity
superselection rule. An important consequence is the vanishing of the
fermionic field average amplitude which is one of the reasons why one can
experience difficulties when trying to define classical limits for electrons.
It is not the only one: since it is not possible to put more than one
electron into one mode, it is also not possible to have the counterpart
of coherent states, which would be eigenvalues of ψ(x, t). Thus it is not
possible to build fermionic states with a large number of excitations
compared to their quantum fluctuations.

The parity superselection rule does not only imply that 〈ψ(x, t)〉ρ = 0
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but also the vanishing of a whole bunch of higher-order quantities. Since
in a metal, the superselection forbids any superposition between different
charge sectors, even of the same parity, non-vanishing fermionic correla-
tors must have equal numbers of creation and annihilation operators.

However, some of these correlators can still be non-zero in the presence
of superconductivity since, in a macroscopic superconductor with well-
defined superconducting phase, the number of Cooper pairs is not defined.
In other words, the superconductor generates superpositions between
charge sectors of the same parity. This way, it is possible to have a bigger
phase space, allowing more superpositions. In such a situation, more
correlators are needed to fully characterize the quantum state of the
electromagnetic field. During my PhD, this possibility has been explored
during R. Menu’s M1 internship and the formalism will be developed
in the forthcoming year. Instead of discussing this very interesting
possibility, we shall now focus on the non-zero correlators present in a
normal metal. These are the electronic version of Glauber’s coherences.

1.4 First-order electronic coherence

1.4.1 Definition and basic properties

As we have seen, the superselection rules impose to look at higher-order
functions in the field operators. We can form two functions that contain
a balanced number of creation and annihilation operators, that are

G(e)
ρ (x1, t1;x2, t2) =

〈
ψ†(x2, t2)ψ(x1, t1)

〉
ρ
, (1.12)

G(h)
ρ (x1, t1;x2, t2) =

〈
ψ(x2, t2)ψ

†(x1, t1)
〉
ρ
. (1.13)

In the following, we will call G(e) the electron first-order coherence and
G(h) the hole first-order coherence, by analogy with Glauber denomination.
When no superscript is indicated, it is usually that we can consider both
electron and hole coherences.

It is easy to show that first-order coherences obey the following
conjugation relation,

G(x1, t1;x2, t2) = G(x2, t2;x1, t1)∗. (1.14)

As we will see later in this section, this relation ensures that the proba-
bility to find an electron in a particular wavefunction is real.
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More interestingly, it is possible to relate electron coherence and hole
coherence through anticommutation relation. Within a non interacting
region,

G(e)(x1, t1;x2, t2) + G(h)(x2, t2;x1, t1) = δ ((x1 − vF t1)− (x2 − vF t2)) .
(1.15)

Of course, this relation is true even in an interaction region if t1 = t2,
since in this case it derives directly from canonical anticommutation
relations. Usually, it is not possible to access the state of the electronic
fluid in the full length of the edge channel. The detector is at a fixed,
localized position in the edge channel. In this case, we have x1 = x2 = x,
where x is the position of the detector. We will also assume that the
detector is in a non-interacting region, enforcing the above relation
between electron and hole first-order coherence. From now on, we will
get rid of the position dependence and place ourself at the location of
the detector.

We can now ask what kind of information is contained inside first-order
coherence. Like in optics, it encodes all single-mode physics. But actually,
since we have fermions here, there can only be at most one electron
per mode. This is why first-order coherence contains the knowledge of
every single-electron wavefunction. Before we proceed to the properties
of electronic coherence and its representation, let us see with a simple
example how the single-particle physics is represented through first-order
coherence.

To this end, we consider N electrons in mutually orthogonal normal-
ized wavefunctions (ϕn)n∈{1,...,N}. The many-body state is then a pure
state |ΨN 〉 written in second quantization as:

|ΨN 〉 =
N∏

n=1

ψ†[ϕn] |0〉 , (1.16)

where |0〉 is the true particle vacuum and ψ†[ϕ] creates an electron in
the single-particle state given by ϕ:

ψ†[ϕ] =

∫
ϕ(t)ψ†(t)dt. (1.17)

Note that the electronic wavefunction is expressed in time. This is of
course because of the linear dispersion relations. More formally, we
define the wavefunction in time as ϕ(t) = φ(x− vF t), at a fixed point x,
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where φ is the usual wavefunction expressed in position. The first-order
coherence is the sum of the contribution of each electron:

G(e)
|ΨN 〉(t1, t2) =

N∑
n=1

ϕ∗
n(t2)ϕn(t1). (1.18)

Each term of the sum, ϕ∗
n(t2)ϕn(t1) can be seen as the density matrix

corresponding to the single-electron state in wavefunction ϕn, ψ†[ϕn] |0〉.
As such, first-order coherence is sometimes called the one-body reduced
density matrix. Its normalization is equal to the average number of
particles in the system (which can be infinite). Of course, we might
wonder if it is possible to access two-particle wavefunctions, and so on.
That is exactly what is done with higher-order coherences as we shall
see in section 1.5.

A natural question we can answer with first-order coherence is the
probability to find an electron in a given wavefunction ϕ. The number
of electrons in wavefunction ϕ is given by a

n[ϕ] = ψ†[ϕ]ψ[ϕ]. (1.19)

It is naturally expressed in terms of first-order coherence (relation 1.14
ensuring the probability is real):

p[ϕ] = 〈n[ϕ]〉 =
∫
ϕ∗(t1)ϕ(t2)G(e)(t1, t2)dt1dt2. (1.20)

Usually, we are not looking at the absolute properties of the electronic
fluid. We always probe the fluid with another one, which serves as a
reference. Usually, the reference is an equilibrium state, namely a Fermi
sea at a given chemical potential and temperature. What is accessed is
the deviation of the probed fluid from the equilibrium one. It is thus
useful to define the excess single-electron coherence3:

∆G(e)(t1, t2) = G(e)(t1, t2)− G(e)
µ,Tel

(t1, t2), (1.21)

where G(e)
µ,Tel

(t1, t2) is the first-order coherence of the Fermi sea with
chemical potential µ and temperature Tel. If the system contains only
one extra electron whose frequencies are well above thermal fluctuations,
we have from (1.18)

∆G(e)(t1, t2) = ϕ∗(t2)ϕ(t1). (1.22)

3. In [Haack et al., 2012], the excess single-electron coherence is called Glauber
coherence for electrons.
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Its normalization is equal to the average number of electrons added from
the Fermi sea. If we denote Ne the average number of electrons above
the Fermi sea and Nh the average number of holes in the Fermi sea, we
have

v2F

∫
∆G(e)(t1, t2)dt1dt2 = Ne −Nh. (1.23)

1.4.2 Wick’s theorem

Before we go into the various ways to represent first-order coherence, let
us have a look at cases where this quantity is sufficient to fully determine
the state of the many-body system. Notably, this means that the higher-
order correlation functions can be expressed in terms of single-electron
coherence.

A wide class of states for which this is true are Gaussian states.
Similarly to Gaussian statistics that can be described only by its first two
moments, a full description of those states is given by first-order coherence,
the second moment. Of course, equilibrium states are Gaussians, since
they can be written as e−βH/Z, but they are not the only ones. In
general, when considering non-interacting problems, electronic states
stay Gaussians. This is notably the case when we apply Floquet theory,
as well as when the electronic fluid is driven classically.

The way we can express higher-order correlation functions in terms
of single-electron coherence in the Gaussian case, is through Wick’s
theorem. We can express every average of balanced product of ψ and ψ†,
by summing over all the possible pairings between ψ and ψ† operators,
each ordered pair giving rise to a factor which contains exactly one ψ
and one ψ†, and thus is either a single-electron or single-hole coherence.
Fermionic statistics impose that a minus sign appear when the pairing
requires an odd number of crossing. A reader more interested about
Wick’s theorem in electron quantum optics as well as its extension can
read [Grenier, 2011].

1.4.3 Representations of the first-order coherence

Up to now, we have considered the expression of single-electron coherence
in time domain. Here, we will discuss three different representations for
the same object: the time-domain representation, the frequency-domain
representation and finally a mixed time-frequency representation called
the electronic Wigner distribution function [Ferraro et al., 2013]. This
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is similar to the representations of a density operator, respectively in
position space, in momentum space or in phase space.

Figure 1.6 presents these three representations for an electron emitted
by the LPA source (see section 1.4.4, page 55). Time representation is
pictured on the right, frequency representation on the left, and in the
middle it is the Wigner function representation.
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Figure 1.6: Representations of the coherence. Here is depicted a typical
wavepacket emitted by the LPA single-electron source. On the left, we
have the modulus of the energy representation. We can see that the
excitation is only electronic since there is nothing outside ω1, ω2 > 0. On
the right, we have the modulus of the time representation. We can see
that the current is an exponential decay. On the middle, we have the
Wigner representation. It is real and contains both positive and negative
values. We can see both the energy dependence of the excitation (which
populates only positive energies) and its time dependence (which is an
exponential decay).

Time-domain representation

Let us first come back to the time-domain representation. The diagonal
part defined by t1 = t2 of the single-electron coherence is proportional
to the probability density of detecting an electron at a given time [Thi-
bierge, 2015]. More directly, it is the average excess electronic density
at detector’s location. Within a region with chiral relativistic dispersion
relation, it also gives the particle current

〈ie(t)〉 = vF∆G(e)(t, t). (1.24)
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However, this representation is not the most convenient for reading out
the energy of particles since it is contained in the phase of the off-diagonal
terms. This information is contained in the electronic occupation number
and this leads us to introduce the frequency domain representation.

Frequency-domain representation

The frequency-domain representation is defined through a double Fourier
transform:

G(e)(ω1, ω2) = v2F

∫
G(e)(t1, t2)ei(ω1t1−ω2t2) dt1dt2

=
2π

vF

〈
c†(ω2)c(ω1)

〉
,

(1.25)

where we have introduced the annihilation operator c(ω) defined by

c(ω) =

√
vF
2π

∫
ψ(t)eiωt dt, (1.26)

satisfying the anticommutation relations

{c(ω), c†(ω′)} = δ(ω − ω′). (1.27)

The diagonal part G(e)
ρ,x(ω, ω) gives a direct access to the electronic occu-

pation number at position x. Besides, this representation is well adapted
to discuss the nature of excitations. First of all, the notion of electron
and hole are relative to a given chemical potential which fixes the posi-
tion of the Fermi level at zero temperature. For the moment, let us put
µ = 0. We then divide the frequency plane (ω1, ω2) into four quadrants
(see fig. 1.7). If both frequencies are positive, excitations are called elec-
tronic whereas when they are negative, we call them holes. Quadrants
with ω1 and ω2 of opposite signs are called the electron/hole coherence
quadrants.

Unfortunately this representation is not very practical if we are
interested about time dependence of the excitations. It would be ideal to
have a representation that allows us to easily view time and frequency
dependence such as the Wigner representation.

Wigner representation

For now, we have just considered first-order coherence expressed in dif-
ferent bases. However, it is possible to have a mixed representation, anal-
ogous to the phase-space representation of density matrices introduced
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Figure 1.7: Frequency domain quadrants for single-electron coherence.
The electronic quadrant defined by both ω1 and ω2 positive gives in-
formation about electronic excitations. The hole quadrant defined by
both ω1 and ω2 being negative gives information about hole excitations.
The two electron/hole quadrants (ω1ω2 < 0) contain information about
electron/hole coherences.

by Wigner [1932]. Before introducing this concept in electron quantum
optics, let us review the case of single-particle density matrices. The
following discussion is inspired by [Ballentine, 2000; Le Bellac, 2003].

Classically, a state can be represented by a probability distribution
over phase space. Namely, if we consider only a single-particle state, it
is fully determined by the probability pcl(x, p; t) to find the particle at
x with momentum p, at time t. This probability distribution has the
following properties:

1. It is non-negative, pcl(x, p; t) ≥ 0.

2. Its marginals are the position and momentum probability distri-
butions. We thus have pcl(x; t) =

∫
pcl(x, p; t)dp and pcl(p; t) =∫

pcl(x, p; t)dx.

3. It is normalized to unity,
∫
pcl(x, p; t)

dxdp
2π~ = 1.

It is then natural to ask whether we can find such a probability distri-
bution for quantum states. If we do not make other assumptions, it
is possible to find an infinity of functions that satisfy those conditions
[Cohen, 1986]. Which one shall we retain?

A mixed state described by a density operator ρ can always be
decomposed in infinitely many ways as a statistical mixture of pure
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states (which are not necessarily mutually orthogonal). Since all these
decompositions can be seen as arising from projective measurements
made on a purification of the density operator ρ [Haroche and Raimond,
2006], no-signaling imposes that it is not possible to distinguish among
them by a measurement performed only on the system. It is thus natural
to impose that the probability distribution does not depend on the way
we decompose the mixed state over pure states. It turns out that if we
impose this simple condition, no function can satisfy the three properties
mentioned above [Wigner, 1997; Srinivas, 1982]4.

To circumvent this result, there are two possible approaches. The
first one leads to the Wigner distribution. In this case, the marginals cor-
respond to the expected probability density but the Wigner distribution
can be negative, invalidating the interpretation as classical probability
distribution. On the other hand, the Husimi Q function is non-negative
and can be interpreted as a probability distribution in the coherent state
basis. But its marginals do not correspond to the probabilities associated
with a measurement of x or p [Husimi, 1940]. The Husimi Q function can
be computed by smoothing out the Wigner distribution with a Gaussian
filter corresponding to the Wigner function of the vacuum state. In what
follows, we will concentrate on the property of Wigner distribution, since
later we will define a time–frequency representation analogous to Wigner
distribution.

The Wigner distribution is defined from the density operator ρ by

Wρ(x, p) =
1

2π~

∫
e−ipχ/~ρ (x+ χ/2, x− χ/2)dχ. (1.28)

As stated earlier, this function is real and its marginals correspond to
probability distributions in x and p. More interestingly, it is possible to
express the average value of an observable as the scalar product between a
function that depends only on the observable and the Wigner distribution

〈O〉ρ =

∫
O(x, p)Wρ(x, p)dxdp, (1.29)

4. Quite amusingly, there is a connection between the difficulty of expressing
quantum mechanics in phase space, and more fundamental questions about quantum
theory. A first possibility for hidden-variable theories, would be to associate to a
quantum state a distribution over phase space. However, given the previous considera-
tions, a hidden variable theory would be quite strange, in the sense that characterizing
the physical state of the system would require a lot more information than what is
contained in its density operator. These considerations on foundations of quantum
physics would be far away from the topic of the manuscript but will be expanded in
our forthcoming book [Degiovanni et al., shed].
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where O(x, p) is the Wigner representation of the operator O, defined as

O(x, p) =

∫
e−ipχ/~ 〈x+ χ/2 |O |x− χ/2〉dχ. (1.30)

This expression of the mean value of any operator as an “average”
weighted by a real function of the state makes the Wigner function
a quasiprobability distribution. This property is shared by Husimi Q
function, but the expression of operators is somewhat more complicated
than for Wigner distribution. As a side note, a state in Wigner repre-
sentation can also be seen as a measurement operator, corresponding to
the projector of the state (up to a factor h). If we consider a coherent
state, it is a Gaussian filter that corresponds to the measurement of
both quadratures, with symmetric, minimal uncertainty in x and p. It
turns out that the projectors on all possible coherent states define a
generalized measurement. Considering the probability of such detection
for every possible coherent state parameter, we obtain the Husimi Q
function, ensuring its probabilistic interpretation.

One might wonder whether states that possess a non-negative Wigner
function have special properties. Actually, it has been shown that a
pure state with positive Wigner function would necessarily have the form
[Hudson, 1974]:

ψ(x) = e−ax2+bx+c, (1.31)

where a, b, c are complex numbers, with <(a) > 0. These include coherent
states but also squeezed states which are non-classical Gaussian states.
The negativity of Wigner function can thus be seen as a witness of non-
classicality. A classical state will have a positive Wigner function, but
the opposite is not necessarily true: there are non-classical states with
positive Wigner function.

Let’s go back to first-order coherence. We can introduce the Wigner
representation [Ferraro et al., 2013]:

W (e)
ρ,x(t, ω) = vF

∫
G(e)
ρ,x(t+ τ/2, t− τ/2) eiωτ dτ. (1.32)

First of all, this function is real but, as we will see later, can take positive
or negative values. A second interesting feature is that both the average
particle current and occupation number are obtained by integrating out
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the corresponding variable:

〈ie(x, t)〉 =
∫

∆W (e)
ρ,x(t, ω)

dω
2π
, (1.33)

δfe,x(ω) = ∆W
(e)
ρ,x(t, ω)

t

, (1.34)

where δfe,x(ω) is the average excess occupation number at frequency
ω and position x, and · · ·t denotes the average over time, which can
either be a simple integration (in case of finite number of particles) or an
average over the time period (in case of a periodic state). We warn the
reader that in the first case, the quantity is a probability density, and
has the dimension of a time. In the periodic case, it is a dimensionless
quantity that corresponds to the number of excess particles at a given
frequency.

Those properties, graphically represented on fig. 1.8 for one electron
emitted by LPA single-electron source, are much alike those of Wigner
distribution for density matrices. One major difference is that Wigner
representation of the first-order coherence is not normalized, the normal-
ization being the average total number of electrons present in the system
(or the average excess number of electrons for excess coherence).

Classicality criterion In order to interpret Wigner function as a
classical probability distribution, it is necessary that it is non negative.
This fact can be used to define a notion of classicality for first-order
coherence: Wigner functions for electrons and holes must be non negative.
This can be summarized that a classical fermionic state satisfies the
following constraint:

0 ≤W (t, ω) ≤ 1. (1.35)
This notion of classicality is, as we will see later, a bit different from the
one we have in optics. In optics, quasi-classical states are not the only
ones to have a non-negative Wigner function, as stated earlier. However,
they are the only ones that result from a classical driving under linear
interactions. In electronics, the classical limit is not as well defined as in
optics, because of Pauli exclusion principle. The main advantage of this
definition is that it corresponds to what one would have in mind for an
adiabatic driving. In this case, as we shall see in the next section, the
Wigner function corresponds to a chemical potential that evolves along
time.

However, it is possible to generate states that are highly non classical
from this electronic point of view, just by driving classically the electronic
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Figure 1.8: Wigner representation of the wavepacket emitted by the
LPA source. The particle current is an exponential decay, and the
excess energy distribution is a Lorentzian in energy. Wigner distribution
possesses negativities and values above one, signature of a non-classical
state in an electronic point of view.

fluid. As we will see in chapter 3, the notion of “classical driving” is a
bosonic many-body notion, whereas the classicality introduced by the
constraint on the Wigner function is a fermionic single-particle notion.
Since the link between bosons and fermions is far from trivial, it is
not shocking that there is a mismatch between those two notions of
classicality. We will also see in next section cases of classical driving that
lead to non-classical Wigner functions.

1.4.4 Simple examples

Let us now discuss some examples of first-order coherences for simple
electronic states. We will mainly focus on the Wigner representation
that will be used throughout the manuscript.
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The Fermi sea

The equilibrium state of the metal is described by two parameters: chem-
ical potential µ and temperature Tel. The chemical potential represents
just a global shift in energy. In the following, we will almost always use
µ = 0. The many-body state of the Fermi sea is usually described by
ρ = exp(−βH)/Z, Z being the partition function. It is also possible to
write down a nice many-body expression by considering each indepen-
dent mode at frequency ω:

ρF,Tel =
⊗
ω∈R

(
(1− fe,Tel(ω)) |0ω〉 〈0ω|

+ fe,Tel(ω)c
†(ω) |0ω〉 〈0ω| c(ω)

)
.

(1.36)

where fe,Tel is the Fermi statistics at zero chemical potential and temper-
ature Tel. It corresponds to having each energy-resolved mode indepen-
dently populated with a probability fe,Tel(ω) = 1/(e~ω/kBTel + 1). It is
really easy to compute first-order coherence in the energy representation.

G(e)
F,Tel

(ω1, ω2) =
2π

vF
δ(ω1 − ω2)fe,Tel

(
ω1 + ω2

2

)
. (1.37)

The δ distribution comes from the fact that, for any stationary single-
electron coherence, there are no coherences between different energy
modes. What remains is the electronic distribution function along the
diagonal of the frequency plane.

In the time representation, single-electron coherence is equal to

G(e)
F,Tel

(t1, t2) =
i

2πvF τth sinh ((t1 − t2)/τth + i0+)
, (1.38)

where τth = ~/πkBTel is the thermal coherence time at temperature T .
As expected for a stationary many-body state, single-electron coherence
depends only on t1 − t2. Finally, the divergence at t1 = t2 comes from
the infinite number of electrons in the Fermi sea5. At zero temperature,
the above expression reduces to

G(e)
F,Tel=0(t1, t2) =

i
2πvF

1

t1 − t2 + i0+
. (1.39)

5. Since we are considering a linear dispersion relation, we should rather speak
about a Dirac sea here.
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By stationarity, the Wigner representation does not depend on time
and reduces to the electronic distribution function and thus shows no
divergences:

W
(e)
F,Tel

(t, ω) = fe,Tel(ω). (1.40)
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Figure 1.9: Frequency and Wigner representations of the Fermi sea first-
order coherence. On the left, we have the frequency representation of the
single-electron coherence for an equilibrium state at temperature T , in
units of 2π/vF . Only the diagonal is non-zero, and follows a Fermi–Dirac
distribution. On the right, we have the Wigner representation of the
same state. This is a stationary state whose frequency content is given
by the Fermi–Dirac distribution.

Single-excitation states

Now we will focus on the Wigner function generated by a single electron
over the Fermi sea. We will review three families of wavefunctions that
are relevant in electron quantum optics. For simplicity, all discussion
will be done at zero temperature but the results remain valid as long as
the wavepackets considered here are located further in energy from the
Fermi sea than thermal fluctuations which deploy over kBTel.

As we have already seen, when we emit a single electron above the
Fermi sea, the excess coherence is the product ϕ∗(t2)ϕ(t1). It is also
possible to deplete the Fermi sea and create a hole excitation. The many-
body state is thus given by

ρ = ψ[ϕh] ρF,Tel=0 ψ
†[ϕh], (1.41)
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where ϕh is a hole wavefunction containing only negative frequencies. It
is therefore straightforward to compute first-order coherence, since we
just have to subtract the hole contribution from the Fermi sea

G(e)(t1, t2) = G(e)
F,Tel

(t1, t2)− ϕ∗
h(t2)ϕh(t1). (1.42)

Turning a hole wavefunction from an electronic one and vice-versa is
obtained by changing ω into −ω. This corresponds to the following anti-
unitary transformation on single-particle states:

ϕh(t) = ϕ∗
e(t) (1.43)

or, in frequency space
ϕh(ω) = ϕ∗

e(−ω). (1.44)

Before we go deeper in the examples, I must insist on one thing.
In the case considered, a single electron emitted above the Fermi sea,
∆G(e)(t1, t2) is equal to the density matrix of this single electron alone,
expressed in time. This equality implies that Wigner representation is the
very same object as the usual Wigner distribution of quantum mechanics.
As such, it is a complete, faithful and convenient representation of the
wavefunction.

However, this correspondence is true only when there is a single
particle added in the system. In other cases, when the source emits
more than a single-electron excitation into the system, the single-electron
coherence becomes a sum of each single-particle contribution. Retrieving
the individual wavefunctions present within a given excess single-electron
coherence is far from being a simple problem, as we will see in chapter 2.
As stated before, compared to usual cases in optics, where the state of
a single mode is manipulated, the case of electron quantum optics is a
multimode problem from the very beginning due to fermionic statistics.

The Landau excitation First, let us start with the Landau ex-
citation emitted by the LPA single-electron source (see section 1.2.3,
page 31). This excitation is emitted at a given energy ωe above the
Fermi level and possesses a spectral width γe. The current is decaying
exponentially on the timescale τe = 1/γe. In the frequency domain, the
wavefunction is given by

ϕe(ω) =

√
vFγe
N

H(ω)

ω − ωe + iγe/2
, (1.45)
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where H(ω) denotes the Heaviside function and

N =
1

2
+

1

π
arctan

(
2ωe

γe

)
(1.46)

is the normalization factor arising from the absence of negative energies.
Of course, this wavefunction is valid only in the idealized regime. Notably,
this implies that the situations to which this wavefunction is physically
relevant restrict to γe � ωe. We will however look at the general case,
without this restriction, because it will give us insight about the Wigner
representation of electronic excitations.

Let us look at Wigner representation of first-order coherence for
different ωe/γe ratios on fig. 1.10. The ratio ωe/γe is nothing but a

ωe/γe = 1/3 ωe/γe = 1 ωe/γe = 3
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Figure 1.10: Wigner representation of Landau excitation wavepackets.
From left to right, the ratio of the injection energy ωe to the escape
rate γe is raised. Note that only the right-most pannel corresponds to a
physically relevant situation. The wavepacket is emitted at t = 0.

quality factor that determines the energy resolution of the excitation. At
fixed injection energy, the higher the energy resolution is, the longer is the
excitation duration as expected from Heisenberg’s uncertainty principle.
Figure 1.10 also shows the effect of the Pauli exclusion principle on
the Wigner function: there is a cut at ω = ωe/2 on the right panel
of fig. 1.10. It arises from the constraint that electronic excitations
only involve positive frequencies with respect to the Fermi level. In the
frequency domain (see fig. 1.6, page 46), if we consider a fixed ω, the
electron coherence can only take values when δω ∈ [−ω/2, ω/2]. Thus, a
single electron will have a Wigner function spread over times of order
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1/ω, and thus will be more and more spread, when ω tends to zero, as
seen on the right panel of fig. 1.10.

We have considered a purely electronic excitation, containing only
positive frequencies. As stated earlier, it is also possible to emit hole
excitation. The discussion is very similar and therefore, we will just
show the corresponding Wigner function and excess Wigner function on
fig. 1.11. Note that, in this case, there is a difference in interpretation
between the full Wigner function, which contains contribution from the
Fermi sea, and the excess Wigner function. In the first case, negativities as
well as values above one cat be interpreted as non classical. In the second
one, negativities naturally arise from the subtraction of one electron from
the Fermi sea. However, at sufficiently low negative frequency, so that
the temperature effects can be neglected, values belows −1 and above
zero are signs of non classicality.
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Figure 1.11: Wigner representation of holes Landau excitations. Left
panel: Fermi sea included. Right panel: excess single-electron coherence
(Fermi sea contribution substracted).

Before going to other kind of excitations, we might want to know
how we can derive such an expression from elementary principles. A first
idea would be to start from a standard edge channel, and model a dot of
size L with a tunnel operator between position x = 0 and x = L:

T = ψ†(L)ψ(0) + ψ†(0)ψ(L). (1.47)

Since we have a non-interacting problem, rather than solving the equa-
tions of motion, we can use a one-particle scattering approach to connect
the incoming Fermi sea and the outgoing state. Developments based on
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such an approach has been carried out by Moskalets et al. [2013], for
adiabatic driving and square driving. It is also possible to perform numer-
ical simulations on a discretized many-body system. Other approaches
replace the quantum dot by a single level and focus on single-particle
quantities. It is thus possible to derive exact equation for a linear driving
[Keeling et al., 2006], or perform numerical simulation [Jonckheere et al.,
2012] in the case of a square driving.

Levitons The other source of single-electron excitations is the
Leviton source, introduced in section 1.2.3, page 30. This source is
obtained by applying a classical, Lorentzian pulse, to an Ohmic contact.

Once we have fixed the amplitude of the pulse, so that exactly one
excess electron is emitted, we only have one parameter left, which is the
typical duration of the pulse, τe. Its wavefunction can be expressed in
the energy domain as:

ϕe(ω) =
√
4πτevF H(ω) e−ωτe . (1.48)

The Leviton is thus a low-energy excitation, mainly localized close to
the Fermi surface, as can be seen from its Wigner representation depicted
on fig. 1.12. As we will see later, this property is shared by all voltage
drives: the resulting single-electron coherence shows that, contrarily to
the case of the Landau excitation, the available energy levels are filled
from the bottom to the top. The Landau excitation generated by the
mesoscopic capacitor thus appears as far from being classical. This point
will be discussed more exhaustively in chapter 3. By the way, we can ask
what happens when the charge carried by Lorentzian voltage is N times
the elementary charge. In this case, the electronic state is still pretty
simple: the excitation is a Slater determinant built from the N mutually
orthogonal electronic states

ϕn(ω) =
√
4πτevF H(ω) e−ωτeLn−1(2ωτe), (1.49)

with Ln the n-th Laguerre polynomial. The full many-body state is thus
formed by the Slater determinant of the Fermi sea, plus the N electrons
in wavefunctions ϕn.

Martin–Landauer wavepackets This electronic excitation has
originally been introduced by Martin and Landauer [1992] to discuss
the current noise generated by a continuous stream of electrons emitted
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Figure 1.12: Wigner representation of the single-electron wavefunctions
eq. (1.49) building the n-Leviton excitations up to n = 4. These wave-
functions have the same average current but have different energy distri-
butions. Note that for n ≥ 2, their Wigner functions exhibit negativites
close to t ' 0.

by an electronic reservoir. Although there do not exist any on-demand
single-electron source generating such wavepackets yet, it is an interesting
example to discuss here because, as we shall see in chapter 2, it naturally
appears when characterizing an arbitrary stationary source.

The Martin–Landauer wavepacket is a window in energy centered
around ωe, and of width γe.

ϕe(ω) =

{√
2πvF /γe, if ω ∈ [ωe − γe/2, ωe + γe/2].

0, otherwise.
(1.50)

Its Wigner function is depicted on fig. 1.13. In the time domain, its
expression is

ϕe(t) =

√
γe

2πvF
e−iωet sinc

(
γet

2

)
, (1.51)

which is known in the signal processing community as the Shannon
wavelet.
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Figure 1.13: Wigner representation of a Martin–Landauer wavepacket.
Note the typical sinc2 current shape. The Wigner function spreads close
to the boundaries of the energy window of width hf as a consequence of
the Heisenberg time/energy uncertainty relation.

Coherent electron/hole excitation states

The excitations we have described up to now are either pure electron
or pure hole excitations. As such, they exhibit vanishing electron/hole
coherences. However, these are not the only excitations emitted by
electronic sources. In particular, as we shall see, most sources do generate
some non-zero electron/hole coherence.

In order to get an intuition of the physical meaning of non-zero
electron/hole coherence, let’s start a simple discussion from the true
fermionic vacuum. The key point is that introducing a single electron
with both positive and negative frequencies, will generate electron/hole
coherences. Let us see why. First, we start from a wavefunction ϕ(ω) with
non-zero values both on positive and negative frequencies and consider
the many-body state

|Ψ〉 = ψ†[ϕ] |0〉 . (1.52)

We always can decompose ϕ on positive and negative frequencies

ϕ(ω) = vϕe(ω) + uϕh(ω), (1.53)
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where ϕe is a normalized electronic wavefunction and ϕh is a normalized
hole wavefunction and |u|2 + |v|2 = 1 since, by construction, ϕe and
ϕh are orthogonal and normalized. The first-order coherence is then
expressed as

G(e)(ω1, ω2) = |v|2 ϕ∗
e(ω2)ϕe(ω1) (1.54a)

+ |u|2 ϕ∗
h(ω2)ϕh(ω1) (1.54b)

+ v∗uϕ∗
e(ω2)ϕh(ω1)

+ u∗v ϕ∗
h(ω2)ϕe(ω1).

(1.54c)

These four terms describe different types of excitations. Equation (1.54a)
is a purely electronic term, since it is non zero only when ω1 and ω2 are
positive. Equation (1.54b) describes only hole contribution for a similar
reason. Finally, cross terms contained in eq. (1.54c) are non zero in the
electron/hole quadrants of the frequency domain. Consequently, this
shows that non zero electron/hole coherences arise from the quantum
delocalization of a single-particle excitation between the electronic and
hole parts of the energy spectrum.

This discussion can now be reformulated in the presence of the Fermi
sea |F 〉. We first start by taking out one electron in the single-particle
state ϕh. Then we have the same situation as before, where the single-
particle states ϕe and ϕh are empty. We just have to add one electron in
the delocalized state ϕ. All this can be described in terms of many-body
states as

|Ψ〉 =
(
vψ†[ϕe] + uψ†[ϕh]

)
ψ[ϕh] |F 〉 . (1.55)

Negative energies being populated, we have (ψ†ψ)[ϕh] |F 〉 = |F 〉. Conse-
quently

|Ψ〉 =
(
u+ v ψ†[ϕe]ψ[ϕh]

)
|F 〉 . (1.56)

The resulting excess single-electron coherence is then

∆G(e)(t1, t2) = |v|2ϕ∗
e(t2)ϕe(t1)− |v|2ϕ∗

h(t2)ϕh(t1)

+ v∗uϕ∗
e(ω2)ϕh(ω1) + u∗v ϕ∗

h(ω2)ϕe(ω1).
(1.57)

Periodic sources

Up to now, we only have considered elementary excitations, composed
of a single electron or a single hole. However, one shot single-electron
detection on the fly has not yet been demonstrated although there are
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theoretical proposals to split a Fermi gas in a time-resolved way [Klich
and Levitov, 2009] or to exploit the capacitive coupling of the flying
electron to a two-electron spin qubit [Thalineau et al.]. Consequently,
most experiments are performed using statistical measurements on the
current and therefore rely on periodic electron sources. Periodicity
is particularily important for tomography protocols, as we will see in
section 1.6. Because of its importance, we shall first discuss the general
properties of the corresponding electronic coherence. Then, as example,
we shall illustrate the specific case of a periodically driven voltage applied
on an equilibrium electronic state.

General properties When a state has a period T = 1/f , its first-
order coherence obeys the following periodicity property

G(t1 + T, t2 + T ) = G(t1, t2). (1.58)

In other words, G(t1, t2), is periodic in t = (t1 + t2)/2. Note that the
periodicity is only in the “diagonal variable” and not in each variable.
This is not surprising since the t̄ = (t1 + t2)/2 dependence encodes the
time evolution whereas the τ = t1 − t2 dependence encodes electronic
coherence.

How can we translate this property within each different representa-
tions of G(e)? In the frequency representation, we only have harmonics
along the diagonal. The coherence can be represented by a sequence of
functions Gn(ω), such as

G(ω1, ω2) = vF
∑
n∈Z

δ (ω1 − ω2 − 2πnf)Gn

(
ω1 + ω2

2

)
. (1.59)

In the Wigner representation, periodicity is recovered in the time variable

W (t+ T, ω) =W (t, ω). (1.60)

When we come back to marginals, periodicity also plays a role. Of course,
the current being the diagonal part of the excess coherence expressed
in time, it is also T -periodic. The (excess) occupation number must be
computed by period, since the number of extra excitations is infinite

fe(ω) =
1

T

∫ T

0
W (e)(t, ω)dt, (1.61a)

δfe(ω) =
1

T

∫ T

0
∆W (e)(t, ω)dt. (1.61b)
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The normalization of the first-order coherence gives the excess average
number of electrons per period. If we note Ne the number of excess
electrons above the Fermi sea in one period, and Nh the number of excess
holes in the Fermi sea in one period, we have

1

T

∫ T

0

(∫
R
∆W (e)(t, ω)

dω
2π

)
dt =

∫
δfe(ω)

dω
2π

=
Ne −Nh

T
. (1.62)

It is now time to discuss examples starting with periodic classical drive.
We will see in chapter 3 the more general case of a periodic source treated
in the non interacting electron approximation.

Classical drives Classical drives are interesting for several reasons.
First, they are straightforward to implement experimentally. Among
them are a.c. drives, which are historically the first time-dependent
sources considered within the mesoscopic physics community. More
importantly, under rather general circumstances, a.c. drives are also
rather immune to the effect of Coulomb interactions. This property
makes them a tool of choice for probing an unknown source.

A periodic drive adds up a R-number term to the single-particle
Hamiltonian, which is −eV (t). The dynamics is then easily obtained by
replacing free field operators by

ψV (t) = exp
(

ie
~

∫ t

−∞
V (τ)dτ

)
ψ(t). (1.63)

From this, the first-order coherence can be obtained in the time domain
as

G(t1, t2) = exp
(

ie
~

∫ t1

t2

V (t)dt
)
GF,Tel(t1, t2). (1.64)

If the voltage drive is periodic, the first-order coherence obeys the prop-
erty given by eq. (1.58). Let us now turn to the other representations of
G(e).

To obtain them, it is convenient to introduce the photo-assisted
transition amplitudes. As we have seen, the fermionic creation operator
is modulated by a time-dependent phase α(t) = exp (ie/~

∫ t
−∞ V (τ)dτ),

when expressed in time. In the frequency domain, this leads to

cV (ω) =

∫
α(ω′)c(ω − ω′)

dω
2π
. (1.65)
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When the driving is periodic in time, α only contains discrete frequencies.
The corresponding creation operators in the presence of the drive are
then expressed in terms of the equilibrium ones as

cV (ω) =
∑
n∈Z

αnc(ω − 2πnf). (1.66)

Applying a classical drive can thus be interpreted as a scattering process
in which the incoming unperturbed electronic states are scattered into
the outgoing states shifted in energy due to photon absorptions from the
classical drive. The transition amplitudes are given by

A(ω → ω′) = out 〈ω
′|ω〉in = 〈0|cV (ω′)c†(ω)|0〉

=
∑
n∈Z

αnδ(ω
′ − ω − 2πnf). (1.67)

That explains why the αn for n ∈ Z are called the photo-assisted tran-
sition amplitudes. For n > 0, αn is the amplitude for absorption of n
photons of energy hf whereas for n < 0 it corresponds to the emission of
n photons of energy hf . The α0 amplitude is the amplitude for elastic
scattering of an electron at energy ~ω.

Coming back to first-order coherence, these amplitudes are useful to
express it in the frequency domain:

G(e)
n (ω) =

∑
p

αpα
∗
p−nfe,Tel (ω + (n− 2p)πf) . (1.68)

At zero temperature, it is possible to see the quantized exchanges between
the drive and the electronic fluid directly on the coherence in energy
(see fig. 1.14). In this case, the coherence takes values only for integer
harmonics of the frequency in the variable δω, because of the periodicity.
The fact that the exchanges are quantized makes that each harmonic
is a staircase function, steps occuring every 2πf . When increasing
temperature, those steps are smoothed over a frequency width kBTel/~.

We can also look at the outgoing occupation number per period

fe(ω) =
∑
n∈Z

|αn|2fe,Tel (ω − 2πnf) . (1.69)

We immediately interpret |αn|2 as the probability for shifting the energy
of an electron by nhf .
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ω1ω2 ω

δω

2πf

2πf

Figure 1.14: Representation of the coherence in energy for a classical a.c.
voltage at zero temperature, as given by eq. (1.68). Here we consider
that αn is non zero when −2 ≤ n ≤ 2. On each bracketed red segment,
the energy coherence takes a non-zero constant value, and it is zero ev-
erywhere else. Due to periodicity, only δω that are integer multiple of
2πf (light grey lines) possess a non-zero coherence. Since the exchanges
between the drive and the fluid are quantized, at a fixed δω, the coher-
ence is a staircase function, whose steps have width 2πf . At non-zero
temperature, the steps are smeared over the frequency associated with
the temperature.
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We now have all ingredients to express the Wigner function, in terms
of photo-assisted transition amplitudes:

W (e)(t, ω) =
∑

n+,n−

αn+α
∗
n−e2iπ(n−−n+)ftfe,Tel(ω−π(n++n−)f). (1.70)

Let us look at the simplest case of a sinusoidal a.c. voltage V (t) =
V0 cos(2πf(t+ T/2)), where we chose the phase πfT so that the current
of electron is maximum at T = 0. In this case, photo-assisted transition
amplitudes are given by Bessel functions αn = Jn(eV0/hf). The Wigner
function is thus given by

W (e)(t, ω) =

+∞∑
n=−∞

Jn

(
2eV0
hf

cos (2πf(t+ T/2))

)
×fe,Tel(ω + πnf).

(1.71)

We now have three energy scales, associated with this problem. The
first one is the energy of photonic excitations, hf . The second one is the
voltage amplitude eV0. Since the sinusoidal drive only carries photons
of energy hf , the ratio eV0/hf will give us an idea of the number of
photons exchanged between the drive and the electronic fluid. Finally,
the temperature gives us the scale of thermal fluctuations kBTel which
smooth out quantum fluctuations.

There are two interesting regimes to discuss. The first one is the semi-
classical regime. In this case we naturally expect that the Wigner function
describes an equilibrium Fermi–Dirac distribution whose chemical poten-
tial varies along time. As we will see, we need to have hf . kBTel, eV0
in order to recover this regime. The second regime is the fully quan-
tum regime, where less than a photon is exchanged between the drive
and the electronic fluid during each period. In this case, we must have
kBTel . eV0 . hf .

The semi-classical regime is the one realized in everyday life. Power
sockets provide a voltage around 220 V at 50 Hz and temperature is
around 300 K. This is typically a case where temperature and voltage
energy scales are several orders of magnitude above frequency energy
scale since, roughly, eV0/hf ≈ 1015 and kBT/hf ≈ 1011.

At a first glance, it might seem quite surprising that a non-zero
temperature is necessary in order to talk about a fully classical regime.
However, it is quite clear while looking at the coherence that temperature
plays a key role here. As can be seen on fig. 1.15, at zero temperature,
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there are a lot of riddles leading to non-classical values of the Wigner
function. Temperature will act on these riddles by blurring them and
then smoothing them out6. The right panel of fig. 1.15 shows that the
Wigner function obeys our classicality criterion (its values are between
zero and one) when kBTel & hf . In this case, the Wigner function is
well described by the adiabatic evolution of the Fermi distribution by
the voltage potential

W (e)(t, ω) = fe

(
ω +

eV (t)

~

)
. (1.72)

At lower temperature (see the middle and left panels of fig. 1.15),

kBT/hf = 0 kBT/hf = 1/2 kBT/hf = 2
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Figure 1.15: Wigner representation of a sinusoidal voltage at large
amplitude (eV0/hf = 10) and for increasing temperatures: for kBTel =
2hf , the Wigner distribution corresponds to an agitated Fermi sea at
temperature Tel and chemical potential µ(t) = eV0 cos (2πft). When the
temperature is decreased, we see quantum interference effects leading to
non-classical values of the Wigner distribution function.

quantum effects manifest themselves as interference fringes. These arise
because, at low temperatures, the electronic thermal coherence time
τth = ~/kBTel diverges and therefore, the time dependence of the a.c.
voltage is felt over such an integral. This leads to Airy function oscillations

6. Of course, one might ask whether these riddles may disappear from other
phenomena, for example interactions. In the case of a single-tone classical voltage
drive as we will see in chapter 3, interactions only affect the amplitude of the drive. As
such, the negativities observed at zero temperature won’t vanish due to interactions,
provided interactions are linear in terms of current.
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as discussed in [Ferraro et al., 2013] and thus to negative and larger than
one values for W (e)(t, ω). The Wigner function is no longer classical in
this case.

In the fully quantum regime, we consider a voltage amplitude that
is both smaller than the frequency and bigger than the temperature.
In this case, let us expand the Wigner function in powers of the ratio
eV0/hf

W (e)(t, ω) =W
(e)
F,Tel

(t, ω) (1.73a)

− FTel(ω) cos(2πft)
(
eV0
hf

)
(1.73b)

+ gTel(ω) cos2(2πft)
(
eV0
hf

)2

+O

((
eV0
hf

)3
)
, (1.73c)

where the auxiliary functions

FTel(ω) = fe,Tel(ω + πf)− fe,Tel(ω − πf), (1.74a)
gTel(ω) = fe,Tel(ω + 2πf) + fe,Tel(ω − 2πf)− 2fe,Tel(ω) (1.74b)

are respectively equal at zero temperature, to −1 if ω ∈ [−πf, πf ] and
zero otherwise for FTel(ω) and to 1 if ω ∈]0, 2πf ], −1 if ω ∈] − 2πf, 0]
and 0 elsewhere for gTel(ω).

Equation (1.73) tells us that, at low voltage, the Wigner function
is a slight perturbation of the Fermi sea. The first order is, at zero
temperature, a cosine in time, whose width is given by the frequency
of the drive. If only terms (1.73a) and (1.73b) are non negligible, the
occupation number is not affected by the driving. In this case, no photon
is absorbed nor emitted by the electronic fluid, similarly to what happens
with non-resonant interactions in optics. This form of the Wigner function
is of particular interest because, as we will see in section 1.6, it allows
us to perform an analog Fourier transform on an unknown quantum
coherence signal. When the drive is high enough so that eq. (1.73c) is
non-negligible anymore, the occupation number departs from the Fermi
step thus showing that some electrons of the Fermi sea are promoted
above the Fermi sea. Single-photon emission and absorption processes
generate electron/hole pairs within the electronic fluid. At increasing
voltage, multiphotonic processes take place, leading to higher frequency
electron/hole pairs generation. This development in terms of eV0/hf can
be seen on fig. 1.16.
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Figure 1.16: Wigner representation of a sinusoidal voltage at low ampli-
tude (|eV0| . hf) and zero temperature. At low voltage (right panel),
the coherence is dominated by the term (1.73b) which contributes to
the average electrical current but not to the excess occcupation num-
ber. At increasing voltages (middle panel), the quadratic contribution in
eV0/hf appears (term (1.73c)) which corresponds to real single-photon
transitions. Then at higher voltages, the contribution of two-photon
transitions becomes visible, progressively leading to the appearance of a
sine-shaped Wigner function. Note that non-classical values are visible
on all the panels.

1.5 Second-order electronic coherence

First-order coherence is a great tool for studying single-electron physics.
But there are good reasons to go beyond this physics. A first example
would be the study correlations of two-electron detection events which
indeed are directly probed by current noise measurements. In particu-
lar, probing two-electron physics is a first step towards understanding
entanglement in quantum conductors. This motivates the search for a
unifying concept able to characterize two-electron physics in all possible
experiments. This concept is nothing but the second-order electronic
coherence, also called two-electron coherence.

In this section, we thus explore two-electron coherence along the lines
used to discuss single-electron coherence. We also discuss how Fermi
statistics manifest itself on its properties. Finally, we clarify its relation
to current noise in great details, an important step towards understanding
the connection between electronic and photonic coherences as we will see
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in chapter 3.

1.5.1 Definition, basic properties and physical interpreta-
tion

The natural container of two-particle physics here is the second-order
electron coherence. This quite complicated object which depends on four
times contains all the two-electron wavefunctions present in the system.
Originally studied by [Moskalets, 2014b], it is defined by direct analogy
with Glauber’s second-order photonic coherence:

G(2e)(t1, t2; t
′
1, t

′
2) = 〈ψ†(t′1)ψ

†(t′2)ψ(t2)ψ(t1)〉ρ. (1.75)

In order to get a better understanding of two-electron coherence, we start
by considering the simple case where the system contains two electrons
on top of the true vacuum in two mutually orthogonal electronic states7.
The second-order coherence is then given by the product of the two-
electron wavefunctions:

G(2e)(t1, t2; t
′
1, t

′
2) = ϕ∗

12(t
′
1, t

′
2)ϕ12(t1, t2), (1.76)

ϕ12 being the two-electron wavefunctions built by the Slater determinant
over ϕ1 and ϕ2

ϕ12(t1, t2) =

∣∣∣∣ϕ1(t1) ϕ1(t2)
ϕ2(t1) ϕ2(t2)

∣∣∣∣ . (1.77)

In the case of a Slater determinant |ΨN 〉 of N electrons built from
mutually orthogonal wavefunctions (ϕk)k=1,...,N , the above expression
generalizes to a sum over all possible two-electron wavefunctions that
can be constructed from the N single-electron states:

G(2e)
|ΨN 〉(x1, x2|x

′
1, x

′
2) =

∑
k<l

ϕk,l(x1, x2)ϕk,l(x
′
1, x

′
2). (1.78)

Because all ϕk,l are antisymmetric, G(2e) also verifies:

G(2e)(t1, t2; t
′
1, t

′
2) = −G(2e)(t1, t2; t

′
2, t

′
1)

= −G(2e)(t2, t1; t
′
1, t

′
2)

= G(2e)(t2, t1; t
′
2, t

′
1).

(1.79)

7. This is the first non-trivial case since G(2e) is zero when there is only one electron
in the system.
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Importantly, these symmetries do not depend on the peculiar state we
have chosen: they are always valid and arise from the anticommutation
relations and thus reflect fermionic statistics of the electrons. A thorough
review of symmetries and their implication for two-electron coherence
can be found in [Thibierge, 2015; Thibierge et al., 2016].

An interesting subspace of the four dimensional parameters space for
second-order coherence is the diagonal plane defined by (t1, t2) = (t′1, t

′
2).

Along this diagonal, G(2e)(t1, t2; t1, t2) gives the joint probability to have
an electron at t1 and another one at t2. The Pauli exclusion principle
imposes that the probability for having two electrons at the same time
is zero, which follows directly from symmetries described by eq. (1.79).
More generally, it is possible to compute any joint probabilities to have
an electron in a wavefunction ϕ1 and another one in a wavefunction ϕ2.
This is given by

p[ϕ1, ϕ2] = 〈ψ†[ϕ1]ψ
†[ϕ2]ψ[ϕ2]ψ[ϕ1]〉ρ

= v4F

∫
ϕ∗
1(t

′
1)ϕ

∗
2(t

′
2)ϕ1(t1)ϕ2(t2)

G(2e)(t1, t2; t
′
1, t

′
2)dt1dt2dt′1 dt′2.

(1.80)

It is also possible to access electron number correlations. These quantities
contain four fermionic operators and can be related to the probability of
joint detection for two electrons defined by (we recall that n[ϕ] is defined
by eq. (1.19))

p[ϕ1, ϕ2] = 〈n[ϕ1]n[ϕ2]〉 − 〈ϕ1|ϕ2〉 〈ψ†[ϕ1]ψ[ϕ2]〉, (1.81)

where we have introduced the scalar product of single-particle states

〈ϕ1|ϕ2〉 = vF

∫
ϕ∗
1(t)ϕ2(t)dt. (1.82)

Let us now consider the extreme cases of equal and orthogonal wavepack-
ets. For orthogonal wavepackets, the probability of joint detection events
is exactly equal to occupation number correlations. But for identical
wavepackets, the probability of joint detection is zero, because of Pauli’s
exclusion principle. Consequently

〈n2[ϕ]〉 = 〈n[ϕ]〉. (1.83)

This reflects fermionic statistics: n[ϕ] eigenvalues are either 0 or 1 and
thus that all moments of n are equals.
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Let us clarify the concept of two-electron coherence in the presence
of the Fermi sea. This is an important point which implies defining the
intrinsic contribution of an electronic source to the total second-order
electronic coherence.

1.5.2 Intrinsic two-electron coherence

The intrinsic two-electron coherence emitted by a source can be defined
from the second-order electronic coherence by subtracting not only the
Fermi sea contribution but also all processes contributing to two-electron
detection and involving the excess single-electron coherence of the source.
These involve classical contributions as well as quantum exchange contri-
butions [Thibierge et al., 2016]:

G(2e)
ρ (1, 2|1′, 2′) = G(2e)

F (1, 2|1′, 2′) (1.84a)

+ G(e)
F (1|1′)∆G(e)

ρ (2|2′) + G(e)
F (2|2′)∆G(e)

ρ (1|1′) (1.84b)

− G(e)
F (1|2′)∆G(e)

ρ (2|1′)− G(e)
F (2|1′)∆G(e)

ρ (1|2′) (1.84c)

+∆G(2e)
ρ (1, 2|1′, 2′). (1.84d)

Equation (1.84) can schematically be represented by fig. 1.17. It should
be seen as a definition of the intrinsic two-electron coherence ∆G(2e)

ρ from
the total two-electron coherence, the Fermi sea two-electron coherence
and lower-order electronic coherences. The second term (1.84b) is present
for classical particles and represents classical correlations in which the
origin of the two detected particles can be traced back either to the Fermi
sea or the source. Such back-tracking is not possible for the exchange
terms (1.84c) whose minus sign comes from the fermionic statistics. Note
that eq. (1.84) is fully compatible with eq. (1.78). Finally, for a state
obtained by adding a single-electron or hole excitation to the Fermi sea,
the intrinsic two-electron coherence vanishes as physically expected for a
source emitting only one excitation.

1.5.3 Representations of two-electron coherence

Exactly as for the first-order electronic coherence, G(2e) as well as ∆G(2e)

can be represented in various ways which we will review here. In par-
ticular, we will see how the fermionic statistics of electrons lead to a
non-classical two-electron coherence in all cases, thus stressing the true
quantum nature of two-electron coherence compared with single-electron
coherence.
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(a) Fermi sea: (1.84a).
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Figure 1.17: Contributions to the two-electron detection probability by
detectors D1 and D2. Full lines represent direct probability amplitudes
whereas dashed lines represent complex conjugated ones. The electronic
system is decomposed into the Fermi sea (F ) and a source (S) emitting
electron and/or hole excitations. The two-electron detection probability
contains four types of contributions.
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ω1ω2

δω̄

ω̄
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Figure 1.18: Nature of two-particle excitations: partitioning the diagonal
plane (ω1, ω2) = (ω̄ + δω̄/2, ω̄ − δω̄/2) in two sectors associated with
pairs of electrons (2e) and pairs of holes (2h) and two sectors associated
with electron/hole pairs (e+h).

The frequency domain representation of two-electron coher-
ence

Exactly as in the case of single-electron coherence, the nature of excita-
tions can be obtained by going to the frequency domain:

G̃(2e)
ρ,x (ω+|ω−) =

∫
R4

G(2e)
ρ,x (t+|t−) ei(ω+·t+−ω−·t−) d2t+d2t−, (1.85)

where t+ = (t1, t2) and t− = (t′1, t
′
2) are respectively conjugated to

ω+ = (ω1, ω2) and ω− = (ω′
1, ω

′
2). Note that antisymmetry properties

(1.79) are also true in the frequency domain.
The diagonal of the frequency domain (ω− = ω+ = (ω1, ω2)) can be

divided into quadrants depicted on fig. 1.18 that describe the elementary
two-particle excitations. When ω1 and ω2 are both positive, we have
an electronic pair whereas we have a pair of holes when they are both
negative. In the case one is positive and the other negative, we have an
electron/hole pair. Note that this classification is compatible with the
permutation ω1 ↔ ω2.

The whole frequency domain (ω+,ω−) can then be decomposed
into 4D simplexes based on these quadrants for the diagonal. This
will naturally be compatible with the antisymmetry properties of the
two-electron coherence. Diagonal simplexes are based on ω+ and ω−
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that both describe the same type of excitation. This leads to a two-
electron simplex, a two-hole simplex and two electron/hole pair simplexes
respectively containing the contributions of two-electron, two-hole and
electron/hole pair excitations. The off-diagonal simplexes where ω+ and
ω− do not belong to the same quadrant describe coherences between
these four different two-particle excitations.

Wigner representation of two-electron coherence

Definition Wigner representation of two-electron coherence is defined
in the same way as for single-electron coherence, as a Fourier transform
with respect to the time differences τj = tj − t′j . When considering an
intra-channel two-electron coherence, this leads to a real function

W (2e)
ρ,x (t1, ω1; t2, ω2) =

∫
R2

v2FG(2e)
ρ,x

(
t+

τ

2

∣∣∣t− τ

2

)
eiω·τ d2τ . (1.86)

Wigner representation of the excess two-electron coherence ∆W
(2e)
ρ,x is

defined by eq. (1.86) from the excess two-electron coherence. Whenever
Wick’s theorem applies, the total two-electron coherence can be computed
in terms of the single-electron one:

G(2e)
ρ,x (1, 2|1′, 2′) = G(e)

ρ,x(1|1′)G(e)
ρ,x(2|2′)− G(e)

ρ,x(1|2′)G(e)
ρ,x(2|1′) (1.87)

and, using eq. (1.84), the same equation also describes the intrinsic two-
electron coherence in terms of the excess single-electron coherence. The
first term contributes to the two-electron Wigner distribution through
the product W (e)

ρ,x(t1, ω1)W
(e)
ρ,x(t2, ω2) which corresponds to independent

classical particles. The second term comes from quantum exchange and,
as we shall see now, is responsible for non-classical features of the two-
electron Wigner distribution function.

Non classicality of two-electron coherences In the case of single-
electron coherence, we gave a definition of classicality based on the
non negativity of Wigner function. It is natural to extend this def-
inition to the two-particle case: W

(2e)
ρ,x (t1, ω1; t2, ω2) would be called

classical if it takes values between 0 and 1. Of course, if we consider the
inter-channel two-electron Wigner distribution associated with the inter-
channel two-electron coherence G(2e)

ρ,x (1, t1; 2, t2|1, t′1; 2, t′2), then when
the two channels are not correlated, we have W (2e)

ρ,x (1, t1, ω1; 2, t2, ω2) =
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W
(e)
1 (t1, ω1)W

(e)
2 (t2, ω2) as expected for uncorrelated classical objects8.

Consequently, if the two-electron Wigner distribution in channels 1 and
2 is classical, the inter-channel two-electron Wigner distribution is also
classical. But as we shall see now, because of its antisymmetry proper-
ties, the two-electron Wigner distribution in a single channel exhibits
non-classical features.

To illustrate this point, let us consider mutually orthogonal time-
shifted wave-packets: ϕ1(t) = ϕe(t− τ/2) and ϕ2(t) = ϕe(t+ τ/2). The
intrinsic two-electron Wigner distribution function associated with the
state |Ψ2〉 = ψ†[ϕ1]ψ

†[ϕ2]|F 〉 is then

∆W
(2e)
|Ψ2〉(t1, ω1; t2, ω2) =Wϕ1 (t1, ω1)Wϕ2 (t2, ω2)

+Wϕ2 (t1, ω1)Wϕ1 (t2, ω2) (1.88)
− 2 cos ((ω1 − ω2)τ)Wϕe(t1, ω1)Wϕe(t2, ω2).

When considering a quasi-classical electronic wavepacket, such that
Wϕe(t, ω) is almost everywhere positive, we see that the last term con-
tains interference fringes due to the cos ((ω1 − ω2)τ) factor. When ϕ1

and ϕ2 are well separated, negativities appear which reflect the non-
classical nature of two-electron wavefunctions within a single edge chan-
nel. Note that the dependence in ω1 − ω2 comes from the fact that, in
the above example, ϕ1 and ϕ2 are time-shifted wavepackets. Energy-
shifted wavepackets would lead to oscillations in t1− t2. In full generality,
the quantum exchange interference terms present both a time and an
energy dependence and this prevents W (2e) to be interpreted as a time-
dependent two-electron distribution function.

Similarly, the two-electron Wigner distribution function of the equilib-
rium state at electronic temperature Tel and vanishing chemical potential
is given by

W
(2e)
µ=0,Tel

(t1, ω1; t2, ω2) = fTel(ω1) fTel(ω2) (1.89a)

− 4πkBTelδ(ω1 − ω2)fB,Tel(ωtot)
sin (ωtott12)

sinh (t12/τ)
, (1.89b)

where ωtot = ω1 +ω2, t12 = t1 − t2 and τ = ~/kBTel denotes the thermal
coherence time. Here fTel is the Fermi–Dirac distribution at temperature
Tel and µ = 0 whereas fB,Tel(ω) = 1/(e~ω/kBTel − 1) denotes the Bose–
Einstein distribution at temperature Tel. The singular second term (1.89b)

8. Here the channel index breaks the indistinguishability between electrons within
the two different channels.
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expresses the Pauli exclusion principle and presents strong oscillations
in t12. Therefore W (2e)

µ=0,Tel
cannot be interpreted as a time-dependent

electronic distribution.

1.5.4 Relation to current noise

Due to the importance of current-noise measurements in nanoelectronics,
let us now describe the precise relation between two-electron coherence
and the excess current noise. Let’s start by recalling that the excess
current correlation ∆Si(t, t

′) is defined as the excess of

Si(t, t
′) = 〈i(t′) i(t)〉 − 〈i(t)〉〈i(t′)〉 (1.90)

when the sources are switched on with respect to the situation where
they are switched off.

Since sub-nanosecond time-resolved measurements are not available
in electronics yet, Si(t, t′) is not directly accessible in the time domain.
However, finite-frequency current-noise measurements [Parmentier et al.,
2011] give access to the noise spectrum, which is a time-averaged quantity.
The time-dependent power spectrum, which contains the same informa-
tion as ∆Si(t, t

′), is defined as the Wigner–Ville transform [Ville, 1948]
of excess current correlations:

W∆Si(t, ω) =

∫
R
∆Si

(
t− τ

2

∣∣∣t+ τ

2

)
eiωτ dτ. (1.91)

Accessing this quantity is still experimentally challenging but an impor-
tant step towards this goal is the recently developed homodyne measure-
ment technique [Gasse et al., 2013] which has been used to probe the
squeezing of the radiation emitted by a tunnel junction.

The canonical anticommutation relations and definition (1.84) imply
that the quantity defined by eq. (1.91) is directly related to the intrinsic
two-electron coherence by

W∆Si(t, ω) +W〈i〉(t, ω) = (1.92a)
− e〈i(t)〉 (1.92b)

− e2
∫
R
hµ(ω, ω

′)∆W (e)
ρ (t, ω′)

dω′

2π
(1.92c)

+ e2
∫
R
v2F∆G(2e)

ρ

(
t+

τ

2
, t− τ

2

∣∣∣t+ τ

2
, t− τ

2

)
eiωτdτ, (1.92d)
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where hµ(ω, ω′) = fµ(ω − ω′) + fµ(ω + ω′) and W〈i〉(t, ω) denotes the
Wigner–Ville transform of the average time-dependent current. The first
term (1.92b) is a Poissonian contribution associated with the granular
nature of charge carriers. The second term (1.92c) arises from two-particle
interferences between excitations generated by the source and electrons
within the Fermi sea. These contributions are called the Hanbury Brown–
Twiss (HBT) contributions since these two-particle interferences are
precisely what is measured in an HBT experiment (we will come back to
these experiments in section 1.6.2). This term comes from the presence of
the Fermi sea. Finally, the last term (1.92d) corresponds to the intrinsic
two-electron coherence contribution to the current noise.

Equation (1.92) is indeed the electron quantum optics version of
the famous relation on fluctuations of particle number in an ideal Bose
gas [Einstein, 1925] also discussed in [Aspect et al., 2008]. It mixes a
Poissonian contribution to number fluctuations that reflects the particle
nature of the quanta considered here with a quadratic term already
identified by Einstein as coming from interferences. The latter term,
which corresponds to (1.92d) minus W〈i〉(t, ω) in electron quantum optics,
directly appears when discussing intensity correlation of classical radiation
emitted by fluctuating sources as mentioned before.

Anticipating over chapter 3, this equation also relates electronic
coherences to quantum optical properties of edge magnetoplasmons
within the edge channel and, as we shall see, of the photons radiated
into a transmission line capacitively coupled to the edge channel as in
[Degiovanni et al., 2009]. It therefore establishes a bridge between
electron quantum optics and the recently studied quantum optics of
noise [Grimsmo et al., 2015].

Finally, let us stress that eq. (1.92), which is also valid in the presence
of interactions, shows that accessing single-electron coherence as well
as the current noise gives access to the diagonal part of two-electron
coherence, as expected since the latter contains all the information on
time-resolved two-electron detection.

Directly accessing the intrinsic two-electron coherence without any
HBT contribution can be achieved by partitioning the electronic beam
onto a beam splitter in an HBT setup (as we shall see on fig. 1.20).
These current correlations are directly related to the inter-channel two-
electron coherence right after the beam splitter since fermionic fields
within different channels anticommute:

〈i1out(t1)i2out(t2)〉 = e2v2F∆G(2e)
out (1, t1; 2, t2|1, t′1; 2, t′2). (1.93)
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Remarkably, this outgoing two-electron coherence is proportional to the
incoming two-electron coherence [Thibierge et al., 2016]:

∆G(2e)
out (1, t1; 2, t2|1, t′1; 2, t′2) = RT ∆G(2e)

S (t1, t2|t′1, t′2). (1.94)

Measuring outgoing inter-channel current correlations in the HBT setup
thus directly probes the intrinsic excess coherence of the source, as in
photon quantum optics.

1.6 Measuring electronic coherences

In this chapter, we have introduced the components of electron quantum
optics, as well as the relevant theoretical quantities. As of now, we
did not get interested in how we can measure those quantities in an
experiment. The goal of this section is to provide a review of the different
reconstruction methods for electronic coherences.

As in optics, the general way to reconstruct coherences is by making
the unknown signal interfere, either with itself, or with a known probe
signal. The first case is typical of amplitude interferometry experiments,
that allows to probe the full coherence through time-resolved current
measurement. The latest case is more typical of intensity interferometers,
and allows to explore the full coherence through current noise measure-
ments.

As we will see, the most reasonable tomography protocol to recon-
struct the first-order coherence is based on intensity interferometers,
which are somewhat immune to Coulomb interaction.

1.6.1 Tomography from single-particle interferometry

Introduction

In classical signal processing, linear filters transform time-dependent
input signals into output signals under the constraint of linearity. Well
known examples include linear circuit elements in classical electronics
and linear optics elements such as lenses, beam splitters and other
various optical devices. These components act as linear filters on the
electromagnetic field classical coherence introduced in the 30s [Zernicke,
1938]. This statement also extends to quantum optics by considering
quantum optical coherences introduced by Glauber [1963b].
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In this section, we show that the same statement is true in electron
quantum optics provided we use quantum conductors in which interac-
tion effects can be neglected. As an example, we explain how the ideal
Mach–Zenhder interferometer [Haack et al., 2011] or the measurement
of the electronic distribution function using a quantum dot as an en-
ergy filter [Altimiras et al., 2010a] realize linear filtering of the excess
single-electron coherence ∆G(e)

ρ,x(t, t′), which should therefore be seen as
a “quantum signal” depending on two times.

We will then briefly discuss why Coulomb interactions partly invali-
date this linear optics picture and this will lead us to the discussion of
two-electron interference-based tomography.

Mach–Zehnder interferometry

An ideal electronic Mach–Zehnder interferometer, such as the one de-
picted on fig. 1.19, is characterized by the times of flights τ1,2 along its
two arms and the magnetic flux threading it ΦB = φB × (h/e). When
an electronic source S is placed on the incoming edge channel 1, the
time-dependent outgoing electric current in channel 1 is directly propor-
tional to the excess electronic coherence of the source [Haack et al., 2011;
Ferraro et al., 2013]:

〈i1out(t)〉 =
∑
j=1,2

Mj,j〈iS(t− τj)〉 (1.95a)

− 2e|M1,2|
∫
R

cos (ωτ12 + φ)∆W
(e)
S (t− τ̄ , ω)

dω
2π
, (1.95b)

where Mi,j denotes the product AiA∗
j , Aj being the transmission ampli-

tude of the beam splitters along path j of the interferometer. We have
introduced τ12 = τ1 − τ2, τ̄ = (τ1 + τ2)/2 and φ = arg(M1,2) + 2πφB,
which is the phase associated with both beam splitters and the magnetic
flux. The first line (eq. (1.95a)) does not depend on the magnetic flux
and therefore corresponds to classical propagation within each of the two
arms of the MZI, whereas the second line (eq. (1.95b)) corresponds to
quantum interferences between propagations within both arms. Because
the average electric current is also proportional to the excess single-
electron coherence of the source, the outgoing average current is obtained
from the excess incoming coherence ∆G(e)

S in channel 1 by a linear filter
which we write symbolically 〈iout,dc〉 = LMZI[∆G(e)

S ]. Measurements of
the ΦB dependent part of the average d.c. current for various τ1 − τ2
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Figure 1.19: Schematic view of the Mach–Zehnder interferometer: the
incoming channels are partitioned at the electronic beam splitter A and
then recombined by the beam splitter B. Here τ1 and τ2 denote the
times of flight across the two branches of the MZI and ΦB the magnetic
flux enclosed by the interferometer.

could then be used to reconstruct single-electron coherence [Haack et al.,
2011].

Limits to single-particle interference tomography schemes

The key ingredient in this derivation is the absence of electronic interac-
tions. Whenever one replaces the Mach–Zehnder interferometer by an
ideal ballistic quantum conductor in which interactions are neglected,
the outgoing current in the measurement lead would also be proportional
to ∆G(e)

S . Denoting by S(tf , ti) the scattering amplitude for an electron
arriving into the conductor at time ti and going out towards the measure-
ment lead at time tf , then the outgoing average time-dependent current
is given by

〈iout(t)〉 =
∫
R2

S(t, t+)S∗(t, t−)∆G(e)
S (t+, t−)dt+dt−, (1.96)

which describes a linear filtering of the incoming single-electron coher-
ence ∆G(e)

S associated with time-dependent scattering. In particular,
this expression is valid within the framework of Floquet scattering the-
ory [Moskalets, 2011].

A criterion for the validity of the electronic scattering theory ap-
proach to quantum transport at finite frequencies is that the frequency
dependence of the electronic scattering matrix of a quantum conductor
can be neglected [Blanter and Buttiker, 2000]. Single- to few-electron



82 ELECTRON QUANTUM OPTICS 1.6.2

excitations emitted by electron quantum optics sources such as the meso-
scopic capacitor [Fève et al., 2007] or the Leviton source [Dubois et al.,
2013a], as well as periodic electric currents generated using an advanced
waveform generator, usually define a frequency scale in the range of one
to few tens of gigahertz. On the other hand, an extended conductor such
as a MZI has a scattering matrix varying over frequency scales of the
order of the inverse of the time of flight of the conductor. For a 10 µm in-
terferometer, it is of the order of 10 GHz or less for larger devices. These
roughly equivalent energy scales fail to satisfy the criterion mentionned
above.

The important stream of theoretical works on interaction-induced
decoherence [Chalker et al., 2007; Neder et al., 2007; Levkivskyi and
Sukhorukov, 2008; Neuenhahn and Marquardt, 2008; Kovrizhin and
Chalker, 2009] in MZI interferometers illustrates the whole complexity of
understanding interaction effects in such extended quantum conductors.
More recent works [Tewari et al., 2016; Slobodeniuk et al., 2016] dealing
with the propagation of individualized energy-resolved single-electron
excitations in a MZI are directly relevant for electron quantum optics
but also show that this problem is not yet fully understood even at the
single-electron level. We will come back on the problem of Coulomb
interaction induced decoherence in chapter 3 of this thesis.

By contrast, Coulomb interaction effects can be neglected over a
much broader frequency range in the QPC which is an almost point-like
electronic beam-splitter. As we shall see now, this plays a very important
role for the intensity-based interferometry experiments.

1.6.2 Single-electron tomography from two-particle inter-
ferometry

Although amplitude interferometry relies on the measurement of average
currents, it does not seem well suited to perform single-electron tomog-
raphy. First of all, as in optics, it would require a perfect control on elec-
tronic optical paths down to the Fermi wavelength. More importantly, as
briefly mentioned in the previous section, Coulomb interactions prevent
reconstructing the incoming single-electron coherence from the experi-
mental signals. In a simplified single-particle view, inelastic collisions
can be viewed as random dephasing of each electronic wavefunctions that
blurs single-particle interferences patterns.
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Lessons from History

This situation is very similar to what happened in astronomy in the 30s
and 40s: attempts at directly measuring the diameter of normal stars
using amplitude interferometry were plagued by the random dephasing
induced by atmospheric turbulences and by the technological challenge of
building a large optical interferometer, which involves controlling optical
paths tens of meters long with subwavelength precision.

A way to circumvent this bottleneck was found by Hanbury Brown
and Twiss (HBT) in the 50s [Hanbury Brown and Twiss, 1956b]: their
idea was to measure intensity correlations [Hanbury Brown and Twiss,
1956a] which contain interferences between waves emitted by pairs of
atoms on the star. The whole point of their method is twofold: first of
all, light intensity is immune to dephasing and therefore the problem
of atmospheric dephasing is avoided. Next, intensity correlations can
be done using electronics and do not require optical path control at
subwavelength level.

It was however quite a surprise that interference patterns would
be present in intensity correlations. Historically, Hanbury Brown and
Twiss discussed intensity correlations in their stellar interferometer [Han-
bury Brown and Twiss, 1956b] as well as in their table-top experiment
[Hanbury Brown and Twiss, 1956a] in classical terms [Hanbury Brown
and Twiss, 1957, 1958], a point that came as a surprise for some people.
The interpretation in terms of two-particle interferences emerged a few
years later [Fano, 1961]. The explanation for this effect came in the
early 60s when Fano showed that the HBT effect ultimately relies on
two-photon interferences. In the 80s, the Hong–Ou–Mandel (HOM) ex-
periment [Hong et al., 1987] also demonstrated two-particle interferences
for identical particles (photons). Since then, two-particle interference
effects have been observed in many different contexts, from stellar inter-
ferometry to nuclear and particle physics [Baym, 1998] and more recently
with bosonic as well as fermionic cold atoms [Jeltes et al., 2007]. Recent
experiments demonstrate a higher degree of control by using independent
single-photon [Beugnon et al., 2006] and single-atom sources [Lopes et al.,
2015].

In this section, we review how the HOM experiment can be used to
measure the overlap of the excess single-particle coherences arriving at a
beam splitter. Remarkably, this result is true not only for electrons but
for any fermionic or bosonic excitation. In photon quantum optics, it
forms the basis of homodyne tomography [Smithey et al., 1993; Lvovsky
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and Raymer, 2009] recently used to characterize few-photon states in the
optical domain [Ourjoumtsev et al., 2006]. In the microwave domain, the
HOM scheme has been used to access photon quantum optical correlations
from electrical measurements [Bozyigit et al., 2011; Lang et al., 2013]
and forms the basis of a tomography scheme for itinerant microwave
photons [da Silva et al., 2010; Eichler et al., 2011].

As we shall see, exactly as in the days of Hanbury Brown and Twiss,
HOM interferometry based tomography has the advantage of avoiding
both the effects of Coulomb interactions within the detector and the
need for optical-path control at sub-Fermi wavelength scale.

The noise is the signal

In electron quantum optics, the HBT and HOM experiments are demon-
strated by sending electronic excitations generated by one or two elec-
tronic sources on an ideal electronic beam splitter, as depicted on fig. 1.20.

In order to make a precise analogy with photon quantum optics,
keeping in mind that in electron quantum optics the vacuum is the
reference Fermi sea and not a true vacuum, we consider that the electronic
counterpart of the table-top HBT experiment (fig. 1.20a) is realized when
one of the incoming channels is fed with the reference Fermi sea (S1 or
S2 being off). By the same analogy, the electronic HOM experiment
(fig. 1.20b) corresponds to situations with both electronic sources in the
incoming channels switched on. Finally, contrary to photon quantum
optics where the arrival of individual photons can be recorded, the
quantities of interest in electronics are the current correlations at zero
frequency in the two outgoing branches. An example of theoretical study
of the HOM experiment with two mesoscopic capacitors can be found in
[Ol’khovskaya et al., 2008].

Let us focus on the outgoing current noise in channel 1. A first
important point is that the low-frequency current noise does not depend
on the distance to the QPC: as will be discussed extensively in chapter 3,
Coulomb interaction effects lead to edge-magnetoplasmon scattering
among the various outgoing edge channels close to the one considered but
the total power remains the same. This is why HBT/HOM interferometry
is immune to interaction effects in the measurement stage (beyond the
QPC). In the same way, the intensity correlations measured in an optical
stellar HBT interferometer are not blurred by atmospheric turbulences.

Consequently, what we need is the excess low-frequency current noise
just after the QPC when both sources S1 and S2 are switched on. It is
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Figure 1.20: Principle of the HBT and HOM experiments: in the
optical HBT experiment (a), excitations emitted by a single source S are
partitioned at the beamsplitter BS whereas in the HOM experiment (b),
excitations emitted by two sources S1 and S2 are sent onto BS. In optics,
one performs a time-resolved detection of photons. In the electronic
case, the beamsplitter is a QPC, and one measures current correlations
between 1out and 2out or current noise in the 1out channel. In the case
of the HBT experiment, vacuum is replaced by the reference Fermi sea.
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the sum of three contributions [Ferraro et al., 2013]:

∆S
(S1&S2)
11 = ∆S

(S1)
11 +∆S

(S2)
11 +∆S

(HOM)
11 , (1.97)

where ∆S
(S1)
11 and ∆S

(S2)
11 are the excess current noise when only the

source Sj (j = 1, 2) is switched on. These terms are given by:

∆S
(S1)
11 = e2T 2

∫
R
∆W

(e)
S1

(t, ω)
t

(1− 2feq) (ω)
dω
2π
. (1.98a)

∆S
(S2)
11 = e2R2

∫
R
∆W

(e)
S2

(t, ω)
t

(1− 2feq) (ω)
dω
2π
. (1.98b)

where R and T denote the reflection and transmission probabilities of
the QPC. They correspond to the excess noise in HBT experiments
performed on each of the sources. Since 1− 2feq(ω) = tanh (~ω/2kBTel)
this expression counts the total number of excitations (electrons and
hole) whose energy are above kBTel injected by the source Sj . When
the other channel (called the probe) is at zero temperature, it is exactly
the total number of excitations injected by Sj . This quantity has been
measured for a single-electron source in quantum Hall edge channel in
[Bocquillon et al., 2012].

The last term, called the HOM contribution since it requires both
sources to be switched on, is given by

∆S
(HOM)
11 = −2e2RT

∫
R2

∆W
(e)
1in(t, ω)∆W

(e)
2in(t, ω)

t dω
2π
, (1.99)

where · · ·t denotes the average over time t. The HOM signal thus directly
represents the overlap of the excess single-electron coherences arriving
at the QPC [Ferraro et al., 2013]. Equation (1.99) encodes the effect
of two-particle interferences between the excitations emitted by these
sources. Note that the time delay of the two sources can be controlled
and, therefore, a single experimental run gives access to the time-shifted
overlaps of the excess electronic Wigner functions of the two sources.
Finally, the minus sign comes from the fermionic statistics of electrons.

Our point here is to emphasize that the electronic HOM experiment
automatically encodes into the experimental signal what the signal pro-
cessing community would call the sliding inner product of the quantum
signals formed by the incoming excess single-electron coherences in chan-
nels 1 and 2. This is why the HOM experiment is so important: it can be
used to test for unknown excess electronic Wigner functions by looking
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at their overlaps with themselves or with the ones generated by con-
trolled and calibrated sources. This idea has been expanded to describe
a generic tomography protocol for reconstructing an unknown excess
single-electron coherence from its overlaps with coherences generated by
suitable a.c. + d.c. drives, which we shall now describe.

Single-electron tomography protocol

Figure 1.21 presents the principle of the generic tomography protocol
proposed in [Grenier et al., 2011a]: the source generating the unknown
state, labeled by the subscript S, sends it on input 1 whereas input
2 is fed with a set of reference states called probe states and labeled
{Pn}, n ∈ N. The chirality of quantum Hall channels enables the spatial
separation of the source and probe states at two distinct inputs of the
splitter. The low-frequency current noise at the output of the splitter
is the experimental signal. It probes the degree of indistinguishability
between the source and probe states. To isolate the contribution of the
source, the total excess noise ∆S at splitter output 3 between the on
and off states of the source has been measured:

∆S = 2e2RT

∫
dω
2π

[
∆W

(e)
S

t

(1− 2feq)− 2∆W
(e)
S ∆W

(e)
Pn

t
]
, (1.100)

where ∆W
(e)
S/Pn

are respectively the source and probe excess Wigner
distribution. As discussed before, the first term in eq. (1.100) represents
the classical random partition noise of the source. It is reduced by the
second term which represents two-particle interferences between source
and probe related to the overlap between ∆W

(e)
S and ∆W

(e)
Pn

. By properly
choosing the probe states, eq. (1.100) allows for the reconstruction of
any unknown Wigner distribution.

The key point lies within the choice of the probes Pn, which has to
satisfy the following requirements:

• By varying the experimental parameters on which the Pn depends,
it is possible to reconstruct the unknown single-electron coherence,
or equivalently ∆WS(t, ω).

• The probes must be chosen so that we can be sure of the single-
electron coherence at the beam splitter despite possible interaction
effects between the source generating Pn and the QPC.
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Figure 1.21: The unknown Wigner distribution ∆W
(e)
S (t, ω) is sent into

input 1. The probe signals ∆W
(e)
Pn

(ω) sent into input 2 are plotted for
n = 0 to n = 3 (the frequency f = 5 GHz and the electronic temperature
is Tel = 80 mK). The excess noise ∆S is measured in output 3 as a
function of the d.c. bias ωDC and the phase difference φ between the
source and probe signals.

It turns out, as shown in [Grenier et al., 2011a], that there exists a
natural choice satisfying both requirements.

Accessing the stationary part of ∆W (e)
S has been known for a long time.

This was the idea of shot noise spectroscopy [Shytov, 2005; Kozhevnikov,
2001]: by varying the probe’s chemical potential, we can probe which
states are filled or empty in the source channel. This suggests to use
an equilibrium reservoir whose chemical potential µP = −eVDC is ex-
perimentally controlled by a d.c. bias voltage. Using eq. (1.100), the
excess electronic distribution function ∆W

(e)
S,n=0(ω) can be obtained via

the derivative of ∆S with respect to the d.c. bias ωDC = −eVDC/~ ap-
plied on the probe port. More explicitly, we define the experimental
data

∆W̃
(e)
S,0 = − π

2e2RT

∂∆S

∂ωDC
, (1.101)

which does not provide directly ∆W
(e)
S,0 but its convolution with the
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thermally-broadened function
(
−∂feq

∂ω

)
:

∆W̃
(e)
S,0 =

∫
R
∆W

(e)
S,0 (ω)

(
−∂feq
∂ω

)
(ω − ωDC) dω. (1.102)

During his PhD, Arthur Marguerite has introduced a deconvolution
technique based on Wiener filtering [Marguerite, 2017] to reconstruct
∆W

(e)
S,0(ω) from the measurement of ∆W̃ (e)

S,0.
Accessing the time dependence of W (e)(t, ω) requires measuring non-

zero harmonics ∆W
(e)
S,n6=0. Following eq. (1.100), accessing the n-th har-

monic requires a probe Pn whose Wigner distribution evolves periodically
in time at frequency nf . At low amplitude of the drive, the Wigner dis-
tribution of the probe depends linearly on the probe voltage VPn(t), such
that VPn(t) = VPn cos(2πnft+ φ) allows one to extract ∆W

(e)
S,n. Indeed,

in this linear regime, the excess Wigner distribution of the probe are
given by eq. (1.73). In the present case, taking into account frequency
nf and dephasing φ, we have

∆W
(e)
Pn

(t, ω) =
eVPn

~
cos (2πnft+ φ) Fn (ω − ωDC) , (1.103)

with Fn(ω) =
(
feq(ω+nπf)−feq(ω−nπf)

)
/(2πnf). The corresponding

∆W
(e)
Pn

for n = 1 to n = 3 are plotted on fig. 1.21. Changing the phase φ
allows us to access both the real and imaginary parts of the harmonics
∆W

(e)
S,n(ω) at a given ω whereas the width of ∆W (e)

Pn
along the energy

axis is fixed by the width of Fn, given by the maximum of kBT and nhf .
As in the n = 0 case, varying a d.c. bias VDC on top of the a.c. probe
excitation enables scanning the energy axis. More explicitely, the noise
signal enables us to reconstruct the experimental data set

<
(
∆W̃

(e)
S,n

)
=

h

8e3VPnRT
(∆Sφ=π −∆Sφ=0) , (1.104a)

=
(
∆W̃

(e)
S,n

)
=

h

8e3VPnRT

(
∆Sφ= 3π

2
−∆Sφ=π

2

)
, (1.104b)

which is related to the harmonics we are looking for by a convolution
with a thermal broadening:

<
(
∆W̃

(e)
S,n

)
=

∫
R
<
(
∆W

(e)
S,n (ω)

)
gn(ω − ωDC)dω, (1.105a)

=
(
∆W̃

(e)
S,n

)
=

∫
R
=
(
∆W

(e)
S,n (ω)

)
gn(ω − ωDC)dω. (1.105b)
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The real and imaginary parts of ∆W
(e)
S,n are thus reconstructed using

the Wiener filtering deconvolution technique as discussed in [Marguerite,
2017].

Experimental state of the art

The electronic HBT experiment has been demonstrated in the late 90s
using d.c. sources [Oliver et al., 1999; Henny et al., 1999] and more
recently using single-electron sources [Bocquillon et al., 2012] which were
then used to perform the electronic HOM experiment [Bocquillon et al.,
2013a]. These experiments have paved the way to measurements and
studies of electron decoherence down to the single-electron level through
HOM interferometry.

As reviewed in [Marguerite et al., 2016a], the HOM experiment has
recently been used to probe interaction effects within quantum Hall edge
channels. In these experiments, performed at filling factor ν = 2, two
single-electron sources are located at some distance of the QPC and
interaction effects are strong enough to lead to quasi-particle destruc-
tion, as suggested by energy relaxation experiments [Le Sueur et al.,
2010]. First, the HOM effect was used to probe how interactions lead
to fractionalization of classical current pulses [Freulon et al., 2015] in
qualitative agreement with the neutral/charge edge-magnetoplasmon
mode model [Levkivskyi and Sukhorukov, 2008] which had been al-
ready probed through energy relaxation experiments [Degiovanni et al.,
2010] and high-frequency admittance measurements [Bocquillon et al.,
2013b]. But the real strength of HOM experiment comes from its ability
to probe electronic coherence in a time- and energy-resolved way. It
was thus recently used to study quantitatively the effect of Coulomb
interactions on energy-resolved single-electron excitations (Landau ex-
citations) [Marguerite et al., 2016b]. The experimental data confirm
theoretical predictions and validate the decoherence scenario based on
edge-magnetoplasmon scattering [Wahl et al., 2014; Ferraro et al., 2014b]
which will be discussed extensively in chapter 3 of this thesis.

The idea of the tomography protocol has been recently demonstrated
by D.C. Glattli’s group [Jullien et al., 2014]: in this experiment, a stream
of Lorentzian pulses is sent onto a beam splitter whose other incoming
channel is fed with a small a.c. drive on top of a d.c. bias. Measurement
of the low-frequency noise then enables reconstructing the photo-assisted
transition amplitudes which, in this case, contain all the information
on single-electron and higher-order electronic coherences [Dubois et al.,
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2013a]. This experiment being performed in a 2DEG at zero magnetic
field, interaction effects can be neglected and the experiment leads to
the reconstruction of the Leviton single-electron coherence [Jullien et al.,
2014]. Although this work provides a proof of principle that single-
electron tomography is possible, this is not a full fledged implementation
of the generic tomography protocol presented here since it relies on the
knowledge that the single-electron coherence is determined by photoas-
sisted tunneling amplitudes and on the hypothesis that the incoming
electronic state is the finite-temperature version of a state obtained by
adding exactly one single-electron excitation on top of the Fermi sea.
However, this work beautifully demonstrates that the required levels of
sensitivity in current-noise measurements for single-electron tomography
have been reached.

A full implementation of the generic tomography protocol that as-
sumes nothing on the state generated by the source S has been performed
by G. Fève’s group during A. Marguerite’s PhD. It forms the first stage of
a quantum electrical current analyzer able to extract all information on
single-particle wavefunctions present within a given quantum electrical
current. This will be the central topic of the next chapter of this thesis.

1.6.3 Probing two-electron coherence through two-parti-
cle interferometry

Let us finally discuss how to probe and access the intrinsic second-order
coherence of an electronic source. Although much less advanced on the
experimental side, this line of research is important in order to be able
to quantify entanglement in electronic systems.

On the theory side, the analysis is not as advanced as for single-
electron tomography. In particular, we shall only discuss protocols that
are based on direct two-particle interferences and which shall thus be
seen as counterparts of MZI at the two-electron level.

Even if current correlations in the HBT geometry only give access
to the diagonal part of the intrinsic two-electron coherence in the time
domain, eq. (1.93) naturally leads to a general idea for accessing the
off-diagonal part ∆G(2e)

S (t1, t2|t′1, t′2) for (t1, t2) 6= (t′1, t
′
2). The idea is to

use linear filters of single-electron coherence as depicted on fig. 1.22. Let
us assume that the outgoing current is obtained from a linear filtering of
the incoming single-electron coherence 〈iA〉 = LA

[
∆G(e)

1in

]
with a similar

relation for detector B. Then, the outgoing current correlations 〈iA iB〉
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are obtained by applying a linear filter to the incoming two-electron
coherence:

〈iA iB〉 = RT
(
L(1)
A ⊗ L(2)

B

) [
∆G(2e)

S

]
(1.106)

in which eq. (1.94) has been used to obtain eq. (1.106).
Despite its compacity, eq. (1.106) unifies many different experiments

under a simple physical interpretation: the intrinsic two-electron coher-
ence ∆G(2e)

S , describing two-particle excitations emitted by the source, is
encoded into current correlations 〈iA iB〉 via an HBT interferometer and
two linear filters for single-electron coherence.

In the absence of these filters, the measurement of current correlations
gives information on the diagonal part of ∆G(2e)

S as seen in section 1.5.4.
When A and B are electronic energy filters, and assuming that no
electronic relaxation process takes place between the QPC and the filters
(see the discussion in section 1.6.1), we access the diagonal part of ∆G(2e)

S

in the frequency domain.
It also naturally leads to the idea of the Franson interferometer [Fran-

son, 1989] originally invented to test photon entanglement [Brendel
et al., 1999; Marcikic et al., 2002] and later considered for testing
two-particle Aharonov-Bohm effect and electronic entanglement gen-
eration [Splettstoesser et al., 2009]. It is a natural way to probe the
off-diagonal part of ∆G(2e)

S in the time domain since, as explained in sec-
tion 1.6.1, a MZI converts single-electron coherences in the time domain
into electrical currents. This example is detailed in [Thibierge et al.,
2016] and with great details in É. Thibierge’s thesis [Thibierge, 2015].

1.7 Summary

In this chapter, we have presented the electron quantum optics formal-
ism based on the study of electronic coherences. Combined with the
Landauer–Büttiker scattering formalism for electronic quantum trans-
port and the importance of Coulomb interactions viewed as a source
of electron quantum optics non-linear effects, a clear analogy between
photon and electron quantum optics emerges, as well as a good insight
of their differences.

In the last section of this chapter, we have presented various protocols
for measuring or probing single- and two-electron coherence, stressing the
importance of two-particle interferences for single-electron tomography.
Beyond this point, our presentation emphasizes that all these experiments
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Figure 1.22: A generalized Franson interferometry experiment: the elec-
tron flow emitted by the source S is partitioned at the QPC and sent into
two linear filtering components A and B. Current correlations between
outgoing currents give access to second-order electronic coherence. Fran-
son interferometry corresponds to use two Mach–Zehnder interferometers
for A and B.

can be interpreted in the signal processing language as performing analog
operations such as linear filtering or overlaps on quantum signals (the
intrinsic single- or two-electron coherences) and encode the results into
experimentally accessible quantities such as average currents and current
correlations. This vision is summarized on fig. 1.23.

As a consequence of this vision, which I have developed in [Roussel
et al., 2017], the electronic coherences appear as a quantum signal by
themselves. After all, this is a natural step from the point of view de-
scribed in section 1.3 of the present chapter: the amplitude of a classical
electromagnetic field is an historical example (among many others) of
a classical signal for which signal-processing techniques have been de-
veloped. But characterizing the quantum states of the electromagnetic
fields requires knowing much more, and photonic coherences contain the
information on fluctuations (quantum and classical) of the quantum elec-
tromagnetic field. In electron quantum optics, there is no classical am-
plitude of the electronic field because of superselection rules, so we have
to deal with electronic coherences as the quantum signals characterizing
the quantum state of the electronic fluid.

Considering electronic coherences, starting with single-electron coher-
ence, as quantum signals raises the question of representing those signals
in the simplest way. As stressed in the introduction of this thesis, the
main problems in signal processing are to find techniques for detecting,
filtering, representing, transmitting, and finally extracting information
or recognize patterns within signals. This naturally brings us to the
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Figure 1.23: Representation of single- and two-electron quantum to-
mography protocol as analog operations performed in the excess single-
and two-electron coherences. Mach–Zehnder interferometry (MZI) is a
linear filtering operation on ∆G(e). Single-electron tomography based on
two-particle inteferences (HOM) performs the overlap of an unknown
excess single-electron coherence with a known one. Finally, Franson
interferometry (Fr.I) is similar to MZI as it performs a linear filtering
operation on ∆G(2e).

next chapter of my thesis where I precisely show how to represent in the
simplest possible way single-electron coherence and what information
can be extracted from such a representation.



Chapter 2

Signal processing for
electron coherence

2.1 Introduction

The goal of this chapter is to present a signal-processing technique which
can answer the following general question: what are the elementary
single-particle excitations present in a quantum electrical current?

Single-electron coherence introduced in section 1.4 is the container of
all single-particle physics within a quantum electrical current. What we
will present here is an algorithm that extracts from this quantum signal
a possible representation of it in terms of single-electron wavefunctions,
their emission probabilities and their coherences. Because of electrons
indiscernability, such a representation is not unique, but we shall see
that some representations are physically more appealing than others.

For the sake of pedagogy, we will start by showing how specific builds
of few-particle excitations on top of the Fermi sea manifest themselves
on single-electron coherence and more specifically on its Wigner function
representation. This will invite us to search for a specific representation
of the single-electron coherence in terms of a notion of electronic atoms
of signals, which I have introduced inspired by a similar notion described
in Michel Devoret’s lecture for describing photons propagating within a
transmission line.

Then, in sections 2.3 and 2.4, I will present the algorithm for finding
representations of single-electron coherence in terms of electronic atoms
of signal for a time-periodic source. This procedure is based on the
transposition of Bloch theory for bands in solids to the context of electron

95
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quantum optics.
In section 2.5, I will discuss a specific class of many-body electronic

states which are the ones obtained by perturbing in a unitary way a
Fermi sea. These are known in the mathematical litterature as the
infinite Grassmanian [Kac, 1990]. In this case, we will show how our
algorithm does indeed find a simple parametrization of these states and
how the data extracted from it can be used to quantify entanglement
between the electron and hole part of the many-body state of the system.
Applications to the diagnosis of single-electron sources will be presented
in section 2.6.

Finally, in section 2.7, I will present an application of this algorithm to
experimental data. This indeed realizes the demonstration of an on-chip
quantum electrical current analyzer combining two-particle interferometry
with signal-processing techniques to find the single-particle content of a
quantum electrical current without any assumption on the many-body
electronic state beyond time periodicity.

2.2 Arithmetics of single-electron coherence

Before we dig deeper into the subject of the recognition of elementary
wavefunctions contained in first-order coherence, we will see how we can
add up elementary excitations to create any generic coherence. It will
provide some intuition about interference pattern that can be seen onto
Wigner function.

2.2.1 Basic building blocks

Single electron, single hole

We have already discussed the contribution to coherence of a single elec-
tron in section 1.4.4. We will discuss here a bit more evolved wavepackets
that we can form from a superposition of two wavepackets.

Let us consider a wavefunction ϕ(t) that is a superposition of two
other orthogonal wavepackets ϕ1(t) and ϕ2(t). We have

ϕ(t) =
√
pϕ1(t) +

√
1− p eiθϕ2(t). (2.1)

In this case, excess first-order coherence is the coherence given by each
wavefunction, plus another term which is, as we will see, an interference
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term:

∆G(e)
ϕ (t1, t2) = pG(e)

ϕ1
(t1, t2) + (1− p)G(e)

ϕ2
(t1, t2)

+ 2<
(√

p(1− p)eiθϕ∗
1(t2)ϕ2(t1)

)
.

(2.2)

For electrons localized at times t1 and t2, the last term will contribute
to Wigner functions by adding an interference fringe at the average of
t1 and t2, whose frequency is the inverse of time difference. In a more
general way, if we consider two wavepackets centered around (t1, ω1) and
(t2, ω2), interference fringes will be at the middle of those two points.

Such a general superposition is, indeed, very difficult to obtain ex-
perimentally, with sources that exist. However, provided we can neglect
interaction, it is quite easy to use Mach–Zehnder interferometer with
disbalanced paths to generate a superposition between one wavepacket
and itself that is time shifted. The phase ϕ can be tuned through the
Aharonov phase of the interferometer. To obey orthogonality condition,
the disbalance of times of flight τ must be greater than the typical scale
of the wavepacket. In this case, it is also easy to give an expression for the
Wigner function of such a state. If we suppose that ϕ1(t) = ϕ0(t− τ/2)
and ϕ2(t) = ϕ0(t+ τ/2) we have:

∆W(e)
ϕ (t, ω) = p∆W(e)

ϕ0
(t− τ/2, ω) (2.3a)

+ (1− p)∆W(e)
ϕ0

(t+ τ/2, ω) (2.3b)

+ 2
√
p(1− p) cos(ωτ − θ)∆W(e)

ϕ0
(t, ω). (2.3c)

We recover contributions of ϕ1 and ϕ2 from eqs. (2.3a) and (2.3b). Inter-
ferences are clearly shown by term (2.3c). To illustrate this discussion,
we will start on fig. 2.1 by considering this realistic case for LPA wave-
functions given by eq. (1.45) page 55.

We can consider a more generic case, where the wavepacket is
made by a superposition of the same wavefunctions shifted both in
time and in energy. Thus, ϕ1(t) = exp(−iδωτ/2)ϕ0(t − τ/2) and
ϕ2(t) = exp(iδωτ/2)ϕ0(t + τ/2). We can therefore extend eq. (2.3):

∆W(e)
ϕ (t, ω) = p∆W(e)

ϕ0
(t− τ/2, ω − δω/2) (2.4a)

+ (1− p)∆W(e)
ϕ0

(t+ τ/2, ω + δω/2) (2.4b)

+ 2
√
p(1− p) cos(ωτ − δωt− θ)∆W(e)

ϕ0
(t, ω). (2.4c)
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Figure 2.1: Wigner function of a time-shifted superposition of Lorentzian
wavepackets. Wigner function is depicted for θ = 0, π and p =
0, 1/2, 4/5, 1. We have chosen a splitting time γeτ = 10.

We can see an example of this case for orthogonal Martin–Landauer
wavepackets on fig. 2.2. We distinguish clearly the two initial Martin–
Landauer wavepackets and interference fringes between them. Isophase
lines for fringes are parallel to the line that connects the center of each
wavepacket.

It is straightforward to transpose this discussion for single-electron
excitations to single-hole excitations. Basically, everything is similar,
except that we are not building coherences by filling up the vacuum
above the Fermi surface, but by depleting the Fermi sea. This does not
change interference patterns and their behavior.

Coherent electron/hole excitation

The last single-particle excitation we have seen in the last chapter was
the coherent electron/hole excitation. Since it is an excitation that is
delocalized between positive and negative energies, we can expect to
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Figure 2.2: Wigner function of a time and frequency shifted superposition
of Martin–Landauer wavepacket. The splitting frequency is δω = 2γe,
and the splitting times are γeτ/2π = 0, 2, 4, 8.

observe interference fringes around the Fermi surface, between blobs
located above and below the Fermi surface (provided the two wavefunc-
tions composing the electron/hole pair are located away of Fermi energy).
This can be viewed on fig. 2.3.

Combining simple blocks

We have shown the elementary blocks that can be formed by a single-
electron excitation. Those blocks are what we will need to build a
general coherence. Of course, provided that wavefunctions forming the
basic excitations are orthogonal, it is possible to sum up their excess
coherences to the Fermi sea contribution. The object we form is then still
a first-order coherence. But it is also possible to add a statistical weight
to each of these contributions. This would be the case for a non-pure
state, for example, or a state that exhibits higher-order coherences, such
as entangled two-electron states.

Actually, if we allow not only wavefunctions but also (non-normalized)
modes, and we start from T = 0 K Fermi sea, we can reach any first-
order coherence, from a collection of orthogonal modes, with associated
probabilities. The goal of the next section is to show the reverse process,
how we can extract the relevant modes from an arbitrary given single-
electron coherence in a time-periodic context. Then, we define a relevant
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Figure 2.3: Wigner function of a balanced electron/hole excitation. n
is the number of superpositions for the hole and electron wavefunctions.
We thus have n electronic and n hole wavefunctions present in the
superposition.

notion of wavefunctions.

2.2.2 Electron and hole trains

An ideal periodic single-electron source is a periodically operated device
that emits exactly one single-electron excitation on top of the Fermi sea
during each period. The corresponding many-body state is an electron
train of the form

|ΨSES〉 =
∏
l∈Z

ψ†[ϕe,l]|Fµ=0〉, (2.5)

where the electronic wavefunction ϕe,l differs from ϕe,l=0 by translation
by lT in the time domain. Ideally, one would like each of these electronic
excitations to be perfectly distinguishable from the others which means
that ϕe,l and ϕe,l′ are orthogonal as soon as l 6= l′. In this case, the
excess single-electron coherence is

∆G(e)
SES(t, t

′) =

+∞∑
l=−∞

ϕe,l(t)ϕ
∗
e,l(t

′). (2.6)

Ideally, at its optimal operating point the mesoscopic capacitor [Fève
et al., 2007; Mahé et al., 2008] generates one electronic excitation and
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one hole excitation per period

|ΨLPA〉 =
+∞∏

l=−∞
ψ†[ϕe,l]ψ[ϕh,l] |Fµ=0〉, (2.7)

where ϕe,l and ϕh,l are time-translated by lT from the electronic wave-
function ϕe,0 and the hole wavefunction ϕh,0. These single-particle states
form an orthonormal family and consequently, the excess single-electron
coherence is then given by

∆G(e)
LPA(t, t

′) =

+∞∑
l=−∞

ϕe,l(t)ϕ
∗
e,l(t

′)−
+∞∑

l=−∞
ϕh,l(t)ϕ

∗
h,l(t

′), (2.8)

where the hole contribution naturally comes with a minus sign. When
closing the dot too much, it was argued [Grenier et al., 2011a] that, during
each period, the mesoscopic capacitor emits a quantum superposition of
no excitation and an elementary electron/hole pair. Such a state would
be parametrized as

|Ψe/h(u, v)〉 =
+∞∏

l=−∞

(
u+ vψ†[ϕe,l]ψ[ϕh,l]

)
|Fµ=0〉, (2.9)

where |u|2 + |v|2 = 1. The resulting single-electron coherence is then

∆G(e)
e/h(t, t

′) =

+∞∑
l=−∞

[
|v|2ϕe,l(t)ϕ

∗
e,l(t

′)− |v|2ϕh,l(t)ϕ
∗
h,l(t

′)
]

(2.10a)

+

+∞∑
l=−∞

[
u v∗ϕe,l(t)ϕ

∗
h,l(t

′) + v u∗ϕh,l(t)ϕ
∗
e,l(t

′)
]
, (2.10b)

in which the right-hand side of eq. (2.10a) lives in the quadrants of
electronic and hole excitations whereas eq. (2.10b) represents the elec-
tron/hole pair coherence arising from |Ψe/h(u, v)〉 whenever uv 6= 0.
Equation (2.8) is recovered for (u, v) = (0, 1) which should therefore
correspond to D ' Dopt whereas for (u, v) = (1, 0) one recovers the
Fermi sea, the result expected when the dot is totally closed (D = 0).
The case where |u|2 = |v|2 ' 1/2 could thus be viewed as an idealized de-
scription of the electronic coherence emitted by the mesoscopic capacitor
at some intermediate value of D between zero and Dopt. It corresponds
to maximal electron/hole entanglement [Roussel et al., 2017]. We will
see in section 2.6 why this proposed description fails at low D.
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Equations (2.6), (2.8) and (2.10) correspond to ideal sources and have
a simple expression in terms of a family of single-electron wavefunctions
called electronic atoms of signal. This notion introduced in [Roussel
et al., 2017] is directly inspired from M. Devoret’s analogous notion for
photon propagating within a coaxial cable [Devoret, 2008]. It consists in
a family of normalized mutually orthogonal single-electron wavefunctions
ϕa,l which are translated by multiples of T :

ϕa,l(t) = ϕa,0(t− lT ) (2.11a)
〈ϕa,l|ϕa′,l′〉 = δl,l′δa,a′ . (2.11b)

An important question is thus to determine whether or not there are
generalizations of expressions (2.6), (2.8) and (2.10) for generic periodic
electronic sources.

The answer is known to be positive in the case of the periodic train of
Leviton source and the corresponding wavefunctions have been identified
analytically by Moskalets [2015]. This work shows that the appropriate
atoms of signal depend on the ratio of the pulse widths to the period,
τ0/T = fτ0, as could be expected since we are imposing orthogonality for
two different periods. When the pulses are well separated (fτ0 � 1) one
expects the overlap between the Moskalets electronic atoms of signal and
the isolated Leviton wavefunction introduced in section 1.4.4, page 58

ϕ1,0(t) =

√
τ0
πvF

1

t+ iτ0
(2.12)

to go to unity. However, what happens for different values of the charge
per pulse q? When q = −ne with n positive integer, it is expected that
the emitted single-electron coherence can be written in terms of atoms
of signal under a form similar to eq. (2.6) except that there would be
n mutually orthogonal electronic single-electron states. But as of now,
these wavepackets are not known except for n = 1. Moreover, when n is
not an integer, the Lorentzian pulse train contains many electron/hole
pairs. In this case, can we find a simple decomposition of ∆G(e) involving
electronic as well as hole atoms of signal?

For the mesoscopic capacitor driven by a square voltage and operated
optimally [Fève et al., 2007], the atoms of signal are expected to be close
to Lorentzian wavefunctions in energy, truncated to a half period [0, T/2],
projected on the space of electronic wavefunctions and finally normalized.
Such an heuristic choice of electronic wavefunctions has recently been
introduced [Roussel et al., 2017] to test for the form given by eq. (2.8) or



2.3.1 THE FLOQUET–BLOCH SPECTRUM 103

(2.10) depending on the operation point. This study already gave a strong
indication that more atoms of signals were needed to fully reproduce the
electronic coherence computed from Floquet scattering theory.

The truth is that realistic sources are, in general, not ideal: first
of all, at non-zero temperature, spurious electron/hole pairs may be
generated from thermal fluctuations. Moreover, even at zero temperature,
decompositions of the form discussed in this section appear to correspond
to ideal operating regimes that are only asymptotic with respect to the
experimental parameters. Last but not least, when electronic coherence
is measured at some distance from such a source, Coulomb interactions
alter the electronic coherence in a drastic way [Marguerite et al., 2016b].

This raises the question of finding a way to express an arbitrary
periodic single-electron coherence in terms of suitable electronic atoms
of signals. We will now present a systematic procedure for obtaining
such an expression together with the appropriate electronic atoms of
signals from single-electron coherence. Let us stress once again that our
procedure can be applied to data obtained from a numerical computation
as well as to experimental data obtained from an electronic tomography
protocol such as the one described in section 1.6.2.

2.3 The Floquet–Bloch spectrum

In this section and the next one, we will describe how we can find
electronic wavefunctions contained in a quantum signal. As stated
earlier, this procedure is similar to Bloch theory. In Bloch theory,
people are interested in the energies taken by a single stationary electron.
Those energies take the form of energy bands, and those bands arise from
the structure of the Hamiltonian, which possesses the space periodicity
of the crystal. Essentially, the procedure to obtain energy bands is to
diagonalize the Hamiltonian.

In this section, we will explain how we can translate this approach to
obtain what we will call the Floquet–Bloch spectrum, which will contain
the probabilities for the eigenmodes contained in the system. For this,
we will introduce another mathematical representation of the coherence,
as an operator. This way, the analogy with Bloch theory will be more
obvious.
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2.3.1 Single-electron coherence as an operator

We will here introduce the main object that we will use throughout
this chapter. For now, we have worked with first-order coherence in
different representations, but we have always considered it as a two-
variable function. Here we will adopt a new point of view, that is to
consider the first-order coherence as an operator. A big advantage of
this point of view, is that it unifies the different representations we have
seen, by regrouping them into a single, basis-independent object.

To define the single-electron coherence operator, we will use its time
representation. Introducing localized single-particle states |t〉 such that
〈t|t′〉 = v−1

F δ(t− t′), we introduce the dimensionless Hermitian operator
G(e)

ρ,x by
〈t|G(e)

ρ,x|t′〉 = G(e)
ρ,x(t, t

′). (2.13)

It is of course possible to obtain the frequency representation, by in-
troducing frequency-localized orthogonal single-particle states |ω〉 (see
appendix A.3). In this case, we have

G(e)
ρ,x(ω, ω

′) = 〈ω|G(e)
ρ,x|ω′〉. (2.14)

Before we concentrate on time-periodic systems, let’s see how we can
translate the properties given in section 1.4 for the operatorial point of
view.

We have seen on eq. (1.14) that we have a conjugation relation for
first-order coherence. This ensures, notably, that the probability to find
an electron in a given state is real. In terms of operators, it means that
G(e)

ρ,x is Hermitian. Furthermore, if we introduce the single-particle state
|ϕ〉 corresponding to an excitation described by wavefunction ϕ

|ϕ〉 = vF

∫
ϕ(t) |t〉 dt, (2.15)

we can obtain the probability to have this wavefunction by sandwiching
the single-electron coherence with |ϕ〉

p[ϕ] =
〈
ϕ
∣∣∣G(e)

ρ,x

∣∣∣ϕ〉 . (2.16)

If we consider a normalized state |ϕ〉, this probability must be a real
number comprised between 0 and 1. This ensures that G(e)

ρ,x is a positive
operator, bounded by 1.



2.3.2 THE FLOQUET–BLOCH SPECTRUM 105

Our strategy is to exploit time periodicity of single-electron coherence
to gain understanding on the elementary single-particle excitations that
are present in the electronic fluid. Periodicity then means that G(e)

ρ,x

commutes with the time-translation operator TT defined by TT |t〉 =
|t+ T 〉.

Information on the electronic (resp. hole) excitations with respect to
the Fermi level which we take here at µ = 0 is obtained by projecting
single-electron coherence using the projectors Π± on the space of positive
(resp. negative) energy single-particle states, thus leading to G(e)

± =

Π± G(e)Π±. The G(e)
+ operator then contains the information on the

electronic excitations present in the system whereas G(e)
− contains the

information on the purely hole excitations.
At zero temperature, we have G(e)

+ = ∆G(e)
+ , the electronic part of

the coherence being only populated by the source. Similarly, we have
G(e)

− = Π− +∆G(e)
− . However, when the temperature is non-zero, this is

not true anymore, since temperature will populate positive frequencies
with electrons, and negative frequencies with holes.

It’s worth noting that the full electronic coherence G(e) also contains
the information on electron/hole coherences, which also commutes with
TT . In order to be able to characterize electron/hole entanglement one
therefore has to study both G(e) and G(e)

± . Let us now describe the
details of this approach to single-electron coherence.

2.3.2 The Floquet–Bloch theorem

For simplicity, let us first focus on the electronic part G(e)
+ . We are led

to introduce eigenstates |ψa,ω〉 living in the positive-energy Hilbert space
H+, indexed by a band-index a and a quasi-energy ω ∈ R/2πfZ which
are the temporal counterparts of Bloch’s functions in band theory. They
are eigenvectors of the time-translation operator TT , which means

TT |ψa,ω〉 = e−iωT |ψa,ω〉. (2.17)

Single-electron coherence is then diagonalized as

G(e)
+ =

∑
a

∫ 2πf

0
pa(ω) |ψa,ω〉〈ψa,ω|

dω
2π
, (2.18)

where the Floquet–Bloch eigenfunctions |ψa,ω〉 satisfy the normalization
condition

〈ψa,ω|ψa′,ω′〉 = 2πδa,a′δR/2πfZ(ω − ω′). (2.19)
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where δR/2πfZ is a Dirac comb of period 2πf . The G(e)
+ operator being

dimensionless, note that the eigenvalues pa(ω) are dimensionless too. The
positivity of the operator G(e)

+ and its boundedness leads to 0 ≤ pa(ω) ≤ 1
for all (a, ω).

2.3.3 Eigenvalue equations

The diagonalization problem that leads to the spectrum (pa(ω))a,ω and
to the Floquet–Bloch eigenfunctions is best expressed in the frequency
domain [Grenier et al., 2011a; Ferraro et al., 2013]. Exactly as in Bloch’s
theory, we introduce T -periodic dimensionless functions ua,ω such that
ψa,ω(t) = e−iωtv

−1/2
F ua,ω(t), and we decompose them in Fourier series

ua,ω(t) =
+∞∑

n=−∞
u(n)a,ω e−2iπnft. (2.20)

The eigenvalue equation G(e)
+ |ψa,ω〉 = pa(ω)|ψa,ω〉 can then be rewritten

in terms of the harmonics G(e)
+,n(ω). Picking a representative ω ∈ [0, 2πf [

for the quasi-energy, the eigenvector equation for pa(ω) is∑
p∈Z

vFG(e)
+,n−p(ω + πf(n+ p))u(p)a,ω = pa(ω)u

(n)
a,ω. (2.21)

This is precisely the equation that will be solved numerically to determine
the spectrum of the single-electron coherence restricted to the electronic
quadrant. We can also see it as the diagonalization of the matrix M(ω),
defined for each ω ∈ [0, 2πf [ as

Mnp(ω) = vFG(e)
+,n−p(ω + πf(n+ p)). (2.22)

The way this matrix is obtained from energy representation of the first-
order coherence is graphically pictured on fig. 2.4.

2.3.4 Physical interpretation

The normalization condition (2.19) for the eigenstates |ψa,ω〉 is the same
as the one of plane waves except for the fact that, in the present case,
ω is a quasi-momentum living in R/2πfZ. The destruction operator
associated with such an excitation is thus defined by direct analogy with
the operator c(ω):

c[ψa,ω] =
vF√
2π

∫ +∞

−∞
ψ∗
a,ω(t)ψ(t)dt, (2.23)
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ω1ω2 Ω

δω2πf

πf
ω

Figure 2.4: Graphical representation of the matrix M . The first-order
coherence in energy representation takes values for δω being an integer
multiple of 2πf . The matrix we extract at a given frequency ω is the
one given by the value of the blue dots, that are spaced by 2πf in both
vertical and horizontal direction. Shifting the frequency ω comes to
shifting vertically the blue dots.

where the normalization factor ensures the canonical anticommutation
relation

{c[ψa,ω], c[ψ
†
a′,ω′ ]} = δa,a′δ(ω − ω′). (2.24)

It then follows that

〈c†[ψa′,ω′ ]c[ψa,ω]〉 = δa,a′δ(ω − ω′) pa(ω). (2.25)

The eigenvalues pa(ω) thus appear as the occupation numbers of the
single-particle states |ψa,ω〉. We can therefore interpret the spectrum of
G(e)

+ as occupation number bands for the Floquet–Bloch states |ψa,ω〉
characterized by their band index a and their quasi-energy ω ∈ R/2πfZ.

2.3.5 Hole excitations and electron/hole coherences

Having discussed the electronic part of the single-electron coherence, let
us discuss the hole part as well as the electron/hole part.

Floquet–Bloch theory for hole excitations

We can also introduce a hole operator G(h) defined by replacing G(e)(t, t′)
in eq. (2.13) by

G(h)
ρ,x(t, t

′) = tr
(
ψ†(x, t)ρψ(x, t′)

)
. (2.26)
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This operator satisfies the same mathematical properties as G(e).
This can be easily shown by using the anticommutation relations of
fermionic operators to relate electron and hole coherence operators

G(h) = 1 − CG(e)C†, (2.27)

where C is the anti-unitary involution that transforms electrons in holes
and vice-versa, that we have seen in section 1.4.4, page 54. In time basis,
it corresponds to a complex conjugation.

At zero temperature we have G(h) = Π− − C∆G(e)C†. Rather than
concentrating on G(h)

+ , because it will make the eigenfunctions of holes
with a positive-frequency spectrum due to the conjugation operation,
we will be interested in ∆G(e)

− , which contains eigenfunctions of holes
at negative frequencies, and with eigenvalues that are the opposite of
the probability of occupation. Of course, this is only valid at zero
temperature, and this is why we introduce ∆0G(e) = G(e) −Π−, where
the difference is always taken with a Fermi sea at zero temperature. This
is important notably to ensure that probabilities stay positive.

Exactly as G(e)
+ , G(e)

− can be diagonalized simultaneously with TT

and we shall introduce a basis of hole single-particle states |ψ(h)
b,ω〉 such

that

∆0G(e)
− = −

∑
b

∫ 2πf

0
p
(h)
b (ω) |ψ(h)

b,ω〉 〈ψ
(h)
b,ω |

dω
2π
. (2.28)

This choice of convention for the hole Floquet–Bloch spectrum is such
that G(h)

+ is diagonalized by the eigenvectors C|ψ(h)
b,ω〉 with respective

eigenvalue p(h)b (ω). Note that the full hole part G(e)
− is diagonal in the

|ψ(h)
b,ω〉 basis with respective eigenvalues 1− p

(h)
b (ω).

Electron/hole coherences

As mentioned before, the full electronic coherence G(e) also contains the
information on electron/hole coherences which also commutes with TT .
Assuming that we have diagonalized the purely electronic and purely hole
part of the single-electron coherence according to eqs. (2.18) and (2.28),
the electron/hole part can then be expressed using the electronic and
hole Floquet–Bloch eigenbases. Since G(e)

+− as well as G(e)
−+ commute
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with TT , the electron/hole coherence part are of the following form

G(e)
+− =

∑
a,b

∫ 2πf

0
g
(eh)
ab (ω) |ψ(e)

a,ω〉〈ψ
(h)
b,ω |

dω
2π
, (2.29a)

G(e)
−+ =

∑
a,b

∫ 2πf

0
g
(he)
ba (ω) |ψ(e)

a,ω〉〈ψ
(h)
b,ω |

dω
2π
, (2.29b)

where g(eh)ab (ω) = g
(he)
ba (ω)∗ in order to ensure hermiticity of G(e). Gener-

ically, the electron/hole coherence part cannot be inferred from the
electronic and hole parts of the single-electron coherence.

2.4 Electronic atoms of signal
For a T -periodic source, an important question raised in [Roussel et al.,
2016] is to determine the simplest representation of single-electron coher-
ence in terms of electronic atoms of signals. As we shall see now, Bloch
decomposition introduced in the previous subsection precisely provides
such a simple decomposition.

2.4.1 Floquet–Wannier functions

The Floquet–Bloch states being quasi T -periodic, it is convenient to
introduce the counterpart of Wannier functions which are the localized
orbitals in solid-state band theory [Wannier, 1937]. They are defined for
l ∈ Z as

|ϕa,l〉 =
1√
f

∫ 2πf

0
e−iωlt |ψa,ω〉

dω
2π
, (2.30)

whose inverse reads

|ψa,ω〉 =
1√
f

+∞∑
l=−∞

eiωlT |ϕa,l〉. (2.31)

The normalization condition (2.19) shows that they form an orthonormal
family. Moreover, for a given band, all the states (|ϕa,l〉)l∈Z are related
by time translation since eq. (2.30) implies that:

TT |ϕa,l〉 = |ϕa,l+1〉. (2.32)

These functions are nothing but the electronic atoms of signals introduced
in [Roussel et al., 2017].
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2.4.2 Floquet–Wannier function ambiguities

Exactly as in solid-state band theory [Marzari et al., 2012], there are
ambiguities in the determination of electronic atoms of signals. These
ambiguities can always be traced back to degenerate common eigenspaces
for G(e)

+ and TT . Let us introduce a unitary tranformation U that keeps
G(e)

+ eigenspaces stable: [U,G(e)
+ ] = 0, then using the U|ψa,ω〉 states

in (2.30), we obtain a new orthonormal family of Wannier functions
which we denote by

∣∣∣ϕ[U ]
a,l

〉
. Equation (2.32) becomes

TT

∣∣∣ϕ[U]
a,l

〉
=

∣∣∣∣ϕ[TT UT†
T ]

a,l+1

〉
. (2.33)

In order to satisfy the time-translation property of Wannier wavefunc-
tions (2.32), we require that U preserves each eigenspace of TT and
we will then discuss what happens depending on the structure of the
common eigenspaces of TT and G(e)

+ .
Preserving the eigenspaces of TT immediately implies that U pre-

serves quasi-energy eigenspaces. Assuming that it leaves each of them
invariant, this means that it reduces to a unitary transformation op-
erating on the space generated by all the Floquet–Bloch states at a
given quasi-energy. Let us now analyze what happens depending on the
eigenspaces of G(e)

+ at fixed quasi-energy.
In the case where the Floquet–Bloch bands are non-degenerate, in-

jective (pa(ω) 6= pa(ω
′) for ω 6= ω′) and do not cross, each common

eigenspace is one dimensional and the only possibility for redefining the
Floquet–Bloch eigenstates is to introduce quasi-energy dependent phases:

|ψa,ω〉 7→ eiθa(ω)|ψa,ω〉. (2.34)

Such quasi-energy dependent phases θ(ω) fall into different topological
sectors which are labeled by the winding number

nw =
1

2π

∫ 2πf

0

dθ(ω)
dω

dω. (2.35)

For example θn(ω) = nTω has winding number n ∈ Z and eq. (2.30)
implies that ∣∣∣ϕ[eiθn ]

a,l

〉
= |ϕa,l+n〉. (2.36)

Consequently, a topologically non-trivial phase has the same effect as
combining a translation by an integer number of periods with a topologi-
cally trivial energy-dependent phase.
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In the case of n degenerate Floquet–Bloch bands over the whole
quasi-energy interval, the above phases are replaced by a quasi-energy
dependent unitary transformation U(ω) ∈ U(n) for 0 ≤ ω < 2πf so that,
considering Aα the set of n band indices, the new Wannier functions are
defined by: ∣∣∣ϕ[U ]

a,l

〉
=

1√
f

∫ 2πf

0

∑
b∈Aα

Ua,b(ω) |ψb,ω〉
dω
2π
. (2.37)

Such transformations are directly relevant when a source emits n single-
electron excitations on top of the Fermi sea. In this case pa(ω) = 1
for several values of a. The topological sectors of such quasi-energy
dependent unitaries are classified by the topological sectors of the overall
phase since all groups SU(n ≥ 2) are simply connected.

The nature of bands we obtain is quite different from the ones we
observe in Bloch theory. In particular, the mathematical structure is
not the same, since the Hamiltonian operator contains spatial derivative,
which is not the case here. As such, the properties we observe are
different from condensed matter ones. A first observation is that bands
can have discontinuities. From our observations for classical voltages and
LPA source driven with a sinusoidal and square voltage, it seems that
such discontinuities appear when temperature is non-zero, for purely a.c.
sources.

We might also wonder about the existence of band crossings. On one
hand, it is quite easy to have degenerate bands, especially for flat bands
at pa(ω) = 0, 1. On the other hand, we have been only able to observe
quadratic degeneracy points, in highly symmetric situations. For now, we
do not have exhibited a model of source, or a set of parameters in which
we observe a linear band crossing. Further numerical exploration with
more possible sources as well as the unravelling of analytical properties
hidden inside Floquet scattering theory will be needed to address the
general questions about band structure.

Finally, since physical states are defined up to a phase, a different
possibility appears in the case of flat bands. For example, one could
replace eq. (2.32) by its projective version, that is introducing a phase in
front of |ϕa,l+1〉. Combining this with eq. (2.33) leads to

UΩ|ψa,ω〉 = |ψa,ω+Ω〉, (2.38)

where the addition is considered modulo 2πf (Ω ∈ R/2πfZ). Substitut-
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ing this into eq. (2.30) leads to∣∣∣ϕ[UΩ]
a,l

〉
= eiΩT |ϕa,l+1〉 . (2.39)

The time translation property (2.32) is satisfied up to a phase.

2.4.3 Minimal-spreading principle

Let us now discuss the general method used to determine suitable elec-
tronic atoms of signals. Exactly as in solid-state physics, a natural idea is
to look for maximally-localized Wannier functions [Marzari et al., 2012].
Let us consider ϕa such a wave-function, the spreading 〈(∆t)2〉ϕa is de-
fined as

〈(∆t)2〉ϕa = vF

∫
R
t2|ϕa,0(t)|2 dt

−
(
vF

∫
R
t |ϕa,0(t)|2dt

)2

.

(2.40)

Let us consider directly the case of n degenerated bands pa(ω) = pα(ω)
for all 0 ≤ ω < 2πf and a ∈ Aα. We then have a quasi-energy depen-
dent unitary transformation ambiguity described by eq. (2.37). Maxi-
mally localized Wannier wavefunctions are now found by minimizing the
quadratic functional

S[U ] =
∑
a∈Aα

〈
(∆t)2

〉
|ϕ[U ]

a 〉 (2.41)

over U(ω) ∈ U(n) for 0 ≤ ω < 2πf . Note that the right-hand side of
eq. (2.40) may be divergent due to the large time behavior of |ϕa,0(t)|2
as, for example, in the case of a Leviton train. In such a case, we should
therefore regularize it by subtracting the same quantity for a reference
choice of the unitary operator such as U(ω) = 1.

Numerically, the implementation of the minimization process is
straightforward in the case of a non-degenerate band. Since there is a
natural cut-off for the length of the wavepacket, in this case it is easy
to compute the functional (2.40) from an arbitrary phase (2.34). More
importantly, it is also easy to compute the gradient, giving access to all
efficient gradient-based minimization algorithms. In our case, we rely on
the GSL implementation of the Fletcher–Reeves algorithm [Fletcher and
Reeves, 1964]. It consists in a succession of line minimizations. We begin
at a given point (which can either be random phase or a null phase),
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and the first direction of minimization is given by the gradient. Then,
at each iteration, a new direction is chosen, depending on the previous
search direction, the gradient of current iteration and the norm of the
gradient of previous iteration. The iteration ends when the gradient is
orthogonal to the line of search.

For the degenerate case (2.37), there are several difficulties. First, we
need to parametrize the unitary matrices U(ω). For this, we introduce
Θ(ω), Hermitian matrices such that

U(ω) = exp(iΘ(ω)). (2.42)

The main difficulty here is that, since U(n ≤ 2) is a non-commutative
group, it becomes hard to compute the gradients of the functional S[U ].
However, it is still easy to compute them if we consider a starting point
at U = 1. In the following, we will denote |ψA,ω〉 the vector containing
every wavefunctions |ψa,ω〉 with a ∈ A, A being the degenerate set of
bands we want to minimize on. the matrix U(ω) acts on this vector
space, mixing wavefunctions. At each iteration n > 1 of the algorithm,
we now replace the wavefunctions |ψ(n−1)

A,ω 〉 by the wavefunctions

∣∣∣ψ(n)
A,ω

〉
= eixnHn(ω)

∣∣∣ψ(n−1)
A,ω

〉
, (2.43)

Hn being the search direction and xn the real parameter that minimize
this search direction. This allows us to always start the line minimization
process from U = 1. To determine the minimum, we check whether our
search direction is orthogonal to the local gradient computed by shifting
eixnHn(ω) to identity. What makes everything work is that all quantities
needed to compute the new direction of minimization are either invariant
on the point of the U(n) group we consider them (norm of the previous
gradient), computed locally (the new gradient) or trivially transported
(previous search direction, which is parallel to the transport). After N
iterations, we end up with

∣∣∣ψ(N)
A,ω

〉
= eiΘN (ω) · · · eiΘ1(ω)

∣∣∣ψ(0)
A,ω

〉
. (2.44)

emphasing the non-commutative character of the group we are minimizing
on.
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2.4.4 Coherences between Floquet–Wannier states

The single-electron coherence restricted to the electronic quadrant can
then be rewritten as

G(e)
+ =

∑
a

∑
l+,l−

g(e)a (l+ − l−)|ϕk,l+〉〈ϕk,l− |, (2.45)

where

g(e)a (∆l) =

∫ 2πf

0
pa(ω) eiωT∆l dω

2πf
. (2.46)

Consequently there is no coherence between electronic atoms of signals
associated with different bands but electronic coherence may extend over
more than one period. Indeed, g(e)a (l+− l−) defined by eq. (2.46) encodes
the inter-period coherence through its l+ − l− dependence: whereas a
flat band won’t lead to coherences between the atom of signals of type a
associated with different periods, a non-flat band will. The typical scale
over which pa(ω) varies is nothing but the inverse timescale over which
inter-period coherence exists.

In the same way, considering the hole part of single-electron coherence
∆0G(e) and the corresponding Floquet–Wannier single-particle states,
quantum coherence between these states can be described by a coefficient
g
(h)
b (l+ − l−) which is obtained by using p

(h)
b (ω) in eq. (2.46). This

describes inter-period hole-excitation coherence in the Floquet–Wannier
basis.

Similarly, knowing the Floquet–Wannier states describing the elec-
tronic and hole part of single-electron coherence, the electron/hole co-
herence can be expressed in this basis through

G(e)
+− =

∑
a,b

∑
l+,l−

g
(eh)
ab (l+ − l−)|ϕ(e)

a,l+
〉〈ϕ(h)

b,l−
|, (2.47)

where

g
(eh)
ab (∆l) =

∫ 2πf

0
g
(eh)
ab (ω) ei∆lωT dω

2πf
. (2.48)

Note that because electron/hole coherence couples different bands, dif-
ferent choices of electronic atoms of signal lead to different values for
g
(eh)
ab (∆l). This is not the case for the coherence between purely elec-

tronic or purely hole wavepackets given by eq. (2.46).
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The Cauchy–Schwarz inequality then implies some constraints on
single-electron coherence which have been discussed in the energy eigen-
basis [Ferraro et al., 2013]. Let us express them in terms of the electronic
atoms of signals. Within the electron and hole quadrants, this leads to∣∣∣g(e)a (l+ − l−)

∣∣∣ ≤ p̄(e)a , (2.49a)∣∣∣1− g(h)a (l+ − l−)
∣∣∣ ≤ 1− p̄

(h)
b , (2.49b)

where p̄(e)a (resp. p̄(h)b denotes the average of the eigenvalue p(e)a (ω) (resp.
p
(h)
b (ω)) over 0 ≤ ω ≤ 2πf . Finally, considering the electron/hole

quadrants, the Cauchy–Schwarz inequality bounds the electron/hole
coherences ∣∣∣g(eh)ab (l+ − l−)

∣∣∣2 ≤ p̄(e)a

(
1− p̄

(h)
b

)
. (2.50)

This inequality immediately recovers the result saying that when there are
no electronic excitations (p(e)a (ω) = 0 for all ω and a) or hole excitations
(p(h)b (ω) = 0), then there are no electron/hole coherences (g(eh)ab (l+−l−) =
0) as well as no coherence between the missing excitations [Ferraro et al.,
2013].

The Martin–Landauer electronic atoms of signal

Let us now consider a stationary electronic state. In this case, the
single-electron coherence only depends on t − t′ and the n = 0 har-
monic is the only non-vanishing one: vFG(e)

n (ω) = δn,0 fe(ω) where
fe(ω) denotes the electronic distribution function. The eigenvalue equa-
tion (2.21) then implies that for p ∈ Z and 0 < ω < 2πf we have
fe(ω + 2πnf)u

(n)
a,ω = pa(ω)u

(n)
a,ω. The bands are therefore indexed by

m ∈ N and the corresponding eigenvectors and eigenvalues are given by:

pm(ω) = fe(ω + 2πmf), (2.51)
u(p)m,ω = δm,p. (2.52)

The Floquet–Bloch waves are plane waves ψm,ω(t) = v
−1/2
F e−i(ω+2πmf)t

and the corresponding Wannier wavefunctions are

ϕm,0(t) =
1√
vFT

sin (πft)

πft
e−2iπ(m+1/2)ft. (2.53)
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The electronic atoms of signal well suited to describe a stationary elec-
tronic coherence are therefore the Martin–Landauer wavepackets [Martin
and Landauer, 1992] of energy width hf centered at energies (m+1/2)hf
with m integer. These atoms of signals are known in the signal-processing
community as the Shannon wavelets.

The spectrum is then given by the bands pm(ω) = fe(ω+2πf) which
are generically not flat. The coherence between two periods separated by
∆l is related to the electronic distribution function in the energy band
[mhf, (m+ 1)hf ]:

g(e)m (∆l) =

∫ 2πf

0
ei∆lωT fe(ω + 2πmf)

dω
2πf

. (2.54)

At zero temperature, in the presence of a d.c. biased voltage Vdc < 0,
the electronic distribution function is a step function of width eVdc/~.
Assuming that fe(ω) = 1 for ω < 0 and fe(ω) = 0 for ω > −eVdc > 0,
the excess electronic coherence is then naturally described in terms of
Martin–Landauer wavepackets of bandwidth e|Vdc|/~ which are a natural
timescale h/e|Vdc|. There is no coherence between Martin–Landauer
wavepackets centered on different ωn = −(n+ 1/2)eVdc/~ with n ∈ N as
well as between Martin–Landauer wavepackets associated with different
time periods of duration h/e|Vdc|.

By contrast, at finite temperature Tel, the electronic distribution
function has a smearing over a scale kBTel/~, thus leading to a non-flat
band spectrum. Therefore, there are always inter-period coherences over
the thermal coherence time h/kBTel. It might seem surprising that when
Tel = 0 K, the inter-period coherences goes to zero, whereas the thermal
coherence time goes to infinity. This comes from the fact that when
decreasing the temperature, as the off-diagonal coherences spread over
more and more period, their modulus decreases, and vanishes at zero
temperature.

Case of a voltage drive at low temperature

We have seen in section 1.4.4 that classical drives possess a typical
structure, especially at low temperature, depicted on fig. 1.14. We will
see now how this structure translates into the Floquet–Bloch formalism.

At zero temperature, the energy coherence is piecewise constant, and
the width of each step is 2πf . If we consider a purely a.c. drive, we see
that the discontinuities does not appear when we extract the matrix
M(ω) for ω ∈ [0, 2πf [ (see fig. 2.5, left). As such, the eigenvalues will be
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independent on the quasi-energy, and the eigenvectors of different quasi-
energy can be deduced by a frequency translation. It implies notably
that it is possible to find a set of Wannier functions that are piecewise
constant in energy, with discontinuities happening every 2πf .

ω1ω2 Ω

δω2πf

πf

ω1ω2 Ω

δω2πf

πf µ/~

Figure 2.5: Matrices for a voltage drive at zero temperature. On the left,
the case of an a.c. voltage drive. In this case, the coherence is constant
for all ω ∈ [0, 2πf [. The eigenvalue problem does not depend anymore on
the quasi-energy. On the right, we consider that there is a d.c. part on
top of the a.c. voltage. In this case, the matrix M(ω) will be piecewise
constant, with a step at ω = µ/~ (mod 2πf).

If we add a d.c. part to the voltage, then it will shift the whole
energy coherence by µ/~ (see fig. 2.5, right). In this case, there are two
possibilities:

• If µ/hf is an integer, we are back to the a.c. case, since the
discontinuity will not happen for ω ∈ [0, 2πf [.

• If µ/hf is not an integer, then the matrix M will be piecewise
constant, with a step at ωs = µ/~ [2πf ]. Similarly, the eigenvectors
for ω ∈ [0, ωs[ can be deduced by translating the eigenvectors at
ω = 0 in energy. The eigenvectors for ω ∈ [ωs, 2πf [ can be deduced
by translating the eigenvectors at ωs. In this case, we can find a set
of Wannier functions that are piecewise constant in energy, with
steps happening at 2πnf and 2πnf + ωs.

If we consider a small, non-zero temperature, such that kBT �
hf , the steps will be smoothed out over a scale kBT/~. We can thus
expect that the property mentioned above remains true, except at the
neighborhood of discontinuities.
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2.4.5 Relation to experimentally relevant quantities

Let us now explain how experimental signals are related to these spectral
quantities. We shall first discuss a simple repeated detection scheme
of a given electronic excitation and then discuss the signal of an HOM
experiment.

Repeated detections

Because electronic atoms of signals are localized in time, they are suitable
single-particle states to discuss repeated detection protocols [Roussel
et al., 2017]. Let us discuss this point in the light of HOM interferometry.

We consider a T -periodic source S such that the electronic part
of the excess single-electron coherence is given by eq. (2.8) in terms
of the electronic atoms of signal |ϕa,l〉. When performing an HOM
interferometry experiment against an ideal electronic source Sa whose
excess single-electron coherence is of the form

∆G(e)
Sa

(t, t′) =

N∑
l=0

ϕa,l(t)ϕ
∗
a,l(t

′), (2.55)

the resulting current noise would be proportional to the overlap between
∆G(e)

S and ∆G(e)
Sa

. Using the T periodicity of ∆G(e)
S , we find that∫

R2

∆G(e)
Sa

(t, t′)∗∆G(e)
S (t, t′)dtdt′ = N p̄a. (2.56)

This overlap precisely counts the number of times an electron in the
single-particle state |ϕa,l〉 is scattered against an electronic excitation in
the same single-particle state for l = 1 to N . Since Sa is an ideal source
sending a train of N identical excitations shifted by multiples of T , p̄a
should be interpreted as the average number of electronic excitations in
the single-particle state ϕa emitted per period.

Although for the moment, these is no counterpart of HOM interfer-
ometry for second-order coherence, the same argument can be extended
to two-particle quantities by considering the overlap between the intrin-
sic excess second-order electronic coherence ∆G(2e)

S of the source S with
the second-order coherence of an ideal train of N electron pairs built
from |ϕa〉 and |ϕb〉 time shifted by T [Thibierge et al., 2016]:

G(2e)
Sa,b

(t1, t2|t′1, t′2) =
N∑
l=1

ϕa,b;l(t1, t2)ϕa,b;l(t
′
1, t

′
2), (2.57)



2.4.5 ELECTRONIC ATOMS OF SIGNAL 119

where ϕa,b;l(t, t
′) denotes the two-particle Slater determinant

ϕa,b;l(t, t
′) =

∣∣∣∣ϕa,l(t1) ϕa(t2)
ϕb,l(t1) ϕb,l(t2)

∣∣∣∣ . (2.58)

The overlap between a train of N electron pairs prepared in the two-
electron states ϕa,b;l for l = 1, . . . , N and the unknown two-electron
coherence ∆G(2e)

S is then proportional to N due to T -periodicity. It is
given by∫

R4

∆G(2e)
S (t|t′)G(2e)

Sa,b
(t|t′)∗ d2td2t′ = N n̄S [ϕa,0, ϕb,0], (2.59)

where n̄S [ϕa,0, ϕb,0] can be interpreted as the number of electron pairs
prepared in ϕa,b;0 emitted per period.

The Hong–Ou–Mandel dip

Let us now consider an HOM experiment where excitations injected
into two incoming channels collide at an ideal electronic beam splitter
characterized by its energy independent transmission T (R = 1 − T
denoting the reflexion probability). The depth of the HOM dip can then
be related to the Floquet–Bloch spectral properties of single-electron
coherence. Let us recall that the two-particle interference contribution
to low-frequency noise in an HOM experiment is equal to [Grenier et al.,
2011a]:

Q = −e2v2FRT
∫ (

G(e)
1 (t, t′)G(h)

2 (t, t′) + [1 ↔ 2]
)

dtdt′. (2.60)

Exactly as in the previous paragraph, this noise signal being integrated
over an infinite time range in the variable t̄ = (t+ t′)/2, a regularization
is required in the case of a time-periodic system. In the present case,
the right-hand side of eq. (2.60) can be expressed in terms of the elec-
tronic and hole Wannier functions which form an orthonormal family
of single-particle states. A double sum on discrete time-period indexes
subsist which can then be regularized by considering that these sums are
truncated to N � 1 values. The T -periodicity leads to the appearance
of a factor N which is the dominant term in the infrared divergence. The
contribution to the finite-frequency noise is then obtained by taking the
time average over [−NT/2, NT/2]. Only the dominant term linear in N
leads to a non-vanishing contribution to the excess noise.
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We then expand both contributions in terms of ∆0G(e) and this
leads to three distinct contributions. Two of them involve only one of
the incoming excess single-electron coherences. They correspond to the
partitioning of single-particle excitations from one of the two incoming
channels at the QPC. These are called the HBT contributions. At zero
temperature, the HBT contribution for one source is

QHBT = e2
∫ 2πf

0

(∑
a

p(e)a (ω) +
∑
b

p
(h)
b (ω)

)
dω
2π
. (2.61a)

and two such contributions must be added and multiplied by RT to
obtain the contribution to the excess current noise. The third contribution
corresponds to two-particle interferences between the excess excitations
emitted into both incoming channels. When the two incoming channels
are identical and not time shifted, we get:

Q(dip)
HOM = 2e2

∫ 2πf

0

∑
a

p(e)a (ω)
(
1− p(e)a (ω)

) dω
2π

(2.62a)

+ 2e2
∑
b

p
(h)
b (ω)

(
1− p

(h)
b (ω)

) dω
2π

(2.62b)

− 4e2
∫ 2πf

0

∣∣∣g(eh)ab (ω)
∣∣∣2 dω

2π
. (2.62c)

2.5 Electron/hole entanglement
For the source description we will propose, we will use Floquet scattering
theory. Since Floquet theory does not take into account interactions, the
many-body state is completely defined by its single-electron coherence,
as discussed in section 1.4.2. The goal of this section is to propose a
way to see how a source described by the Floquet formalism affects the
incoming equilibrium state at the many-body level. To this end, we will
introduce a many-body operator corresponding to the scattering. This
will then allow us to discuss electron/hole entanglement.

Let me stress that this description as well as the result in this section
are only valid when interactions can be neglected and that the incoming
state that is transformed by the source is Gaussian (like the Fermi sea,
thermal states or classical voltage states). In this case, Wick’s theorem
apply and we can determine the full many-body state from first-order
coherence. Of course, this is an unrealistic hypothesis in the general case,
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as we will see in chapter 3. It seems however that this hypothesis is quite
relevant when one tries to describe a source like a driven quantum dot,
since the length scales involved are smaller, and the screening of Coulomb
interactions more important due to the gates. It is also consistent with
our Floquet modelization which does not take into account interactions
between electrons.

2.5.1 Floquet–Bloch parametrization of the many-body
state

The most striking feature of Floquet scattering theory is that many-body
dynamics can be described at the single-body level, the output ladder
operators being expressed as a linear combination of the input ones. If
we denote S the many-body scattering operator, this can be written as

ψout(t) = Sψin(t)S† =

∫
S(t, t′)ψin(t

′)dt. (2.63)

Finding an expression for S is an interesting challenge, since it will give
insights on the action of Floquet sources on the incoming equilibrium
state, at the many-body level. To this end, we will use the Floquet–Bloch
basis, we have introduced in this chapter.

Two-mode model

Before getting interested in the whole, complicated, many-body problem,
let us start with simple case, where we consider only two modes, one single-
electron mode described by ϕe, and one single-hole mode described by ϕh.
When considering the periodic many-mode Floquet case, these modes
will be Floquet–Bloch waves, as we will see next. At zero temperature,
the incoming hole mode ϕh is filled and contains exactly one electron,
whereas the incoming electron mode ϕe is empty. The Floquet source
will scatter the mode ϕh into a linear combination of ϕe and ϕh. Note
that we consider a purely a.c. source here. As such, we expect that

Sc†[ϕh]S† = uc†[ϕh] + vc†[ϕe], (2.64)

where u and v are complex constants such that |u|2 + |v|2 = 1. Since S
must be unitary, eq. (2.64) defines almost the whole dynamics, up to a
phase that appears in the scattering of electron mode

Sc†[ϕe]S† = eiθ(u∗c†[ϕe]− v∗c†[ϕh]). (2.65)
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Before we get interested in this general case, we will look into a simpler
case, where u ∈ R and θ = 0. As we will see later on, this contains
an important part of the physics, and the general case can easily be
recovered.

We will show here that S can be described as a displacement-like
operator defined as

S = exp
(
λc†[ϕe]c[ϕh]− λ∗c†[ϕh]c[ϕe]

)
, (2.66)

where λ is a complex parameter. Note that we can also consider a real
parameter, since the phase of λ can be reabsorbed by changing the phase
difference between ϕe and ϕh. To develop this exponential, we will use
the following identity

−
(
c†[ϕe]c[ϕh]− c†[ϕh]c[ϕe]

)2
= ne(1−nh)+nh(1−ne) = Πodd, (2.67)

where ne/h = (c†c)[ϕe/h] is the number operator for the corresponding
ϕe/h mode and Πodd is the projector on the sector containing one particle
in the two modes considered. If we also introduce the orthogonal projector
Πeven that projects on the sector containing either zero or two particles
and λ = |λ|eiφ, we find a simple expression for the many-body scattering
operator,

S = Πeven +Πodd

(
cos |λ|+ sin |λ|

(
eiϕc†[ϕe]c[ϕh] + e−iϕc†[ϕh]c[ϕe]

))
.

(2.68)
It is trivial from this expression to show that the action of the S gives
back eqs. (2.64) and (2.64), under the previous assumption of u being
real and θ = 0.

Let us now look at the general two-mode case. In fact, we can
decompose the general scattering operator into a product of two operators

Sg = SSd, (2.69)

where Sd is a dephasing operator that dephases each electron and hole
modes differently. In our two-mode picture, we can write this operator
as

Sd = exp
(

i
(
θe(c

†c)[ϕe] + θh(c
†c)[ϕh]

))
. (2.70)

The two phases θe, θh are the degrees of freedom we missed for the general
case shown described by eqs. (2.64) and (2.65).
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Many-body scattering operator

To understand the many-body case, we first need to understand how we
can map our description in terms of Floquet–Bloch waves into the action
of the scattering operator. For this, we split the scattering operator into
two parts. First, we will consider a scattering that rearranges electrons
and holes independently. This operator will be described by a unitary
matrix ei(Θ(h)+Θ(e)), where Θ(h) and Θ(e) are Hermitian matrices acting on
the hole and electron subspaces respectively. These operators generalize
the phases θh and θe we have considered for the two-mode scattering
process. Their action on the Fermi sea is, as we shall see in next section,
to add a global phase to the state. Then, we will consider a two-mode
scattering process, where each pair of modes is scattered according to
eqs. (2.64) and (2.65), with u ∈ R+ and θ = 0. The mathematical details
for such a decomposition of general unitary operators can be found in
appendix C.

We can now use the Floquet–Bloch basis to rewrite the full many-
body scattering operator as a product of uncoupled elementary two-mode
operator, with a prefactor that scatters electron and hole subspaces
independently.

Sg = exp

(∑
a∈N

∫ 2πf

0
λa(ω)

(
c†[ψ(e)

a,ω]c[ψ
(h)
a,ω]

− c†[ψ(h)
a,ω]c[ψ

(e)
a,ω]
) dω
2π

) (2.71a)

× exp

(
i
∑
a,b∈N

∫ 2πf

0

(
Θ

(e)
ab (ω)c

†[ψ(e)
a,ω]c[ψ

(e)
b,ω]

+ Θ
(h)
ab (ω)c

†[ψ(h)
a,ω]c[ψ

(h)
b,ω ]
) dω
2π

)
.

(2.71b)

The many-body state at zero temperature

We can use this many-body scattering matrix to compute the outgoing
many-body state, in case of a zero-temperature input state |F 〉. In this
case, the incoming modes below the Fermi surface are filled, and the ones
above are empty. This implies several things. First, factor (2.71b) of
the many-body scattering operator turns into a global phase, since it is
an independent rearrangement of hole and electron modes. We will put



124 SIGNAL PROCESSING FOR ELECTRON COHERENCE 2.5.1

this irrelevant phase to one, in what follows. Second, if we develop the
remaining exponential, we have a tensor product of factors having the
form (2.68), one for each Floquet–Bloch wave. The contribution arising
from the sector containing an even number of particle vanishes in each
of these factors. What finally remains when we fully parametrize using
Floquet–Bloch waves is∏

ω∈[0,2πf [
a∈N

(√
1− p

(e)
a (ω) +

√
p
(e)
a (ω)c†

[
ψ(e)
a,ω

]
c
[
ψ(h)
a,ω

])
|F 〉 . (2.72)

There are several important things to remark here. First, there is
a one-to-one correspondence between electronic bands and hole ones,
with p

(e)
a (ω) = p

(h)
a (ω). This feature is not obvious when electron/hole

symmetry is not present in the system, and we will do more extensive
numerical exploration in near future to check that this feature is preserved
by our algorithm. Furthermore, electron/hole coherences only appear for
these corresponding bands.

Flat bands at zero temperature

We will end this section by making a connection with previous work of
Vanević et al. [2007, 2008, 2016]. In their work, they discuss the case of a
classical a.c. voltage at zero temperature, and find a simplified expression
for the many-body state, similar to eq. (2.72), as well as similar properties
of the output coherence. Notably, from a smart use of the properties of
first-order coherence at zero temperature, they can deduce the absence
of inter-band correlations in the electron/hole coherence.

To make this connection, we will consider the case of an excitation
described by flat bands, from zero temperature. We will also, as previ-
ously, consider that there are no d.c. contributions. As stated earlier, an
a.c. voltage drive at zero temperature is just a specialization of this case.
Note that we have cos(λa(ω)) =

√
1− pa(ω) and sin(λa(ω)) =

√
pa(ω).

Since we are considering flat bands, λa(ω) is constant in ω.
This allows us to reorganize a combination of Bloch modes as a

combination of Wannier wavefunctions directly at the many-body level.
Of course the choice of Wannier functions in the electron quadrant will
constrain the choice of Wannier functions in the hole quadrant. Namely,
we have∫ 2πf

0
c†
[
ψ(e)
a,ω

]
c
[
ψ(h)
a,ω

] dω
2π

=
∑
l∈Z

c†
[
ϕ
(e)
a,l

]
c
[
ϕ
(h)
a,l

]
. (2.73)
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Using the same development as above, we finally obtain

|Ψ〉 =
∏
a∈N

∏
l∈Z

(√
1− pa +

√
pac

†
[
ϕ
(e)
a,l

]
c
[
ϕ
(h)
a,l

])
|F 〉 , (2.74)

which is the formula for a classical voltage drive found in [Vanević et al.,
2016], that we extended for the more general case of flat bands. Note
that, once we choose a determination for the electronic Floquet–Wannier
wavefunctions, it determines also the Floquet–Wannier wavefunctions
for holes, up to a global phase. As such, we do not expect the Floquet–
Wannier wavefunctions to be minimally spread for both electrons and
holes.

Non-zero temperature

At non-zero temperature, all terms of eq. (2.68) will play a role. The
contribution eq. (2.71b), arising from the separate rearrangement of
electron and hole modes will have a non-trivial contribution to the
total state. This contribution may scatter electrons deep into the Fermi
sea compared to the thermal scale into the thermal fluctuations, as well
scatter holes from the thermal fluctuations deeper into the Fermi sea.
It is also possible to rearrange wavefunctions inside the thermal band.
Similar processes appear in the electron subspace. Notably, this term
will correlate explicitly different bands. The contribution eq. (2.71a) will
also act differently, since sectors of even parities are expected if one of
the Floquet–Bloch waves possesses thermal fluctuations at this point.
We expect that the atoms of signal, as well as their respective coherences
to be modified by this term. Remarkably, we note however that the
description in terms of Floquet–Bloch waves at zero temperature allows
us to give a many-body description up to the two Hermitian operators
Θ(e) and Θ(h). This is interesting since it gives a way to see what processes
will occur when “heating” an ideal single-electron source.

Let me stress once again that the many-body states we have con-
sidered are not valid for every situation. Especially, we expect a break
down as soon as interactions will enter into the game. In this case, we
can see this decomposition as the simplest guess for the many-body state
from single-particle coherence. An interesting perspective would be to
have a general procedure that can refine this guess as we get access to
higher and higher order coherences, providing a clear insight of the elec-
tronic coherences in terms of many-body state. This question will lead
to further investigations in near future.
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2.5.2 Electron/hole entanglement entropy

Now that we have discussed the many-body state for the whole system,
containing positive and negative frequencies, we will show how we can
describe the many-body state associated only to electronic quadrant.
Of course, a natural way to do this is to consider the full many-body
expression and trace out the negative frequencies. This can easily be
done at zero temperature since we obtained a simple expression for the
whole many-body state in this case, but we want an approach that can
work as long as the state obeys Wick’s theorem.

A first remark is that, if the whole state obeys Wick’s theorem, the
reduced state will, since the associated correlation functions expressed in
frequency basis are just correlation functions of the whole state taken in
the simplex of positive frequencies. Thus, a Floquet state will possess
density matrices for electronic part that can be fully deduced from first-
order coherence.

A very natural guess for the many-body state associated to the
electronic quadrant corresponds to filling non-coherently each Floquet–
Bloch mode with its probability. This corresponds to the following state

ρ+ =
⊗

ω∈[0,2πf [
a∈N

((
1− p(e)a (ω)

)
|0〉 〈0|+ p(e)a (ω)c†[ψ(e)

a,ω] |0〉 〈0| c[ψ(e)
a,ω]
)
.

(2.75)
What we obtained here is quite similar to the thermal state, as can be seen
by comparing this expression to eq. (1.36). This state also obeys Wick’s
theorem and since it gives us the same first-order coherence for electron
quadrant, it is the many-body state associated to this quadrant. It is
very easy to show this from the zero-temperature many-body expression
also.

One property of a perfect n-electron source is that there are no
correlations between electrons and holes. Namely, the many-body state
associated to positive and negative frequencies factorizes, which gives

ρnES = ρ+ ⊗ ρ−. (2.76)

We can measure quantitatively how our description departs from this, in
full generality, by looking at the mutual information between positive
and negative frequencies. If we denote S(e/h)

vN the von Neumann entropies
associated respectively to electrons and holes, and S

(tot)
vN the entropy
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associated to the whole system, the mutual information is defined by

I(e : h) = S
(e)
vN + S

(h)
vN − S

(tot)
vN . (2.77)

In what follows, we will concentrate on the zero-temperature case. In
this case, the global state is pure, and its von Neumann entropy vanishes.
It also imposes that the von Neumann entropy of the electronic part
equals the von Neumann entropy of the hole part. As such, the mutual
information is two times the von Neumann entropy of the electron part.
In the case where we only emit uncorrelated electrons and holes, the
von Neumann entropy will vanish, giving us an information-theoretic
criterion characterizing the purity of the source.

The last piece we miss is how we can compute the von Neumann
entropy from the Floquet–Bloch decomposition. Starting from the ex-
pression for the many-body state, it is easy to show that

S
(e)
vN = −

∑
a∈N

∫ (
p(e)a (ω) log2(p(e)a (ω))

+ (1− p(e)a (ω)) log2(1− p(e)a (ω))
) dω
2πf

.

(2.78)

2.6 Electron-source diagnostic

In this section, we apply our signal-processing technique to numerical
data coming from a Floquet modelization of periodic electron sources.
Our goal is to use the Floquet–Bloch spectrum to assess quality of the
source as a single-electron source, along the lines discussed in the previous
section. Because of their experimental importance, the LPA and the
Leviton sources will be discussed.

2.6.1 The mesoscopic capacitor

Let us apply our method to the mesoscopic capacitor case (see sec-
tion 1.2.3, page 31) operated by a time-dependent voltage Vg(t) as
depicted on fig. 2.6. In the present section, the mesoscopic capacitor will
be modeled using Floquet scattering theory since, in most experimen-
tally relevant regimes, interaction effects within the capacitor itself can
be neglected. Motivated by experiments [Fève et al., 2007; Marguerite
et al., 2016a], we will consider the case of a square drive as well as of a
sinusoidal drive.
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Exactly as in [Grenier et al., 2011a], the mesoscopic capacitor is
characterized in the Floquet scattering theory by the level spacing of the
dot ∆, the transparency D of the QPC (see fig. 2.6) as well as by the
voltage drive Vg(t). The Floquet scattering matrix is then expressed as

S(t, t′) = exp
(

ie
~

∫ t

t′
Vg(τ)dτ

)
S0(t− t′), (2.79)

where S0 denotes the scattering matrix of the dot which, in the frequency
domain, is given by

S0(ω) =

√
1−D − e2iπ~(ω−ω0)/∆

1−
√
1−D e2iπ~(ω−ω0)/∆

, (2.80)

where ω0 notes a bias. Choosing ω0 = 0 ensures that a peak in the
density of states of the dot is located at the Fermi level in the absence of
external drive.

We will now discuss the operating regimes of the mesoscopic capacitor
by computing the electron/hole entanglement from the Floquet–Bloch
spectrum for the electronic excitations at fixed ∆ and driving frequency f
in terms of the experimentally controlled parameters D and V0, the latter
being the amplitude of the drive applied to the mesoscopic capacitor.

2.6.2 Square drive

In the case of a square drive used to demonstrate single-electron emission
by the mesoscopic capacitor [Fève et al., 2007], the T -periodic voltage
drive is defined by Vg(t) = −V /2 for −T/2 ≤ t < 0 and Vg(t) = V /2 for
0 < t < T/2.

Electron/hole entanglement

Figure 2.7 presents a density plot of the entropy defined by eq. (2.78) as
a function of D and eV /∆ at fixed ∆/hf = 20. There are shallow zones
with minima in each square eV /∆ ∈]n, n+1] (n ∈ N) and 0 < D ≤ 1. In
the single-electron sector, a global minimum can be found at eVopt/∆ ≈
0.37 and Dopt ≈ 0.47 and the corresponding entropy is 0.20 bit. As we
shall see, this is the regime where the mesoscopic capacitor behaves almost
ideally, emitting exactly one electronic and one hole excitation per period.

There is also a minimum in the second square where 1 < eV /∆ ≤ 2
but the zone is further from zero. In this zone, three electrons are emitted
during the first half period and three holes during the other one, due to
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Figure 2.6: Left panel: The mesoscopic capacitor is a ballistic quan-
tum conductor formed by connecting a quantum dot to a chiral edge
channel via a quantum point contact of transparency D. Right panel:
Modelization as a driven quantum dot with level spacing ∆ connected
to an electronic reservoir. The mesoscopic capacitor is driven by an a.c.
voltage drive Vg(t) applied to the top gate. Applying a d.c. voltage bias
to the top gate shifts the energy levels of the dot. The mesoscopic ca-
pacitor emits a stream of electron and hole excitations whose Wigner
distribution function W (e)

S (t, ω) is depicted as a density plot on the right
panel.
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Figure 2.7: Density plot of the electron/hole entanglement entropy at
zero temperature for the mesoscopic capacitor operated with a square
drive of frequency f such that ∆/hf = 20 as a function of eV /∆ and D.

the fact that at zero voltage, there is a level at the Fermi energy. It is
not surprising that in this zone the deviation from the ideal regime is
greater than in the previous case, since we expect a generation of more
electron/hole pairs.

A surprising feature are the substructures that appear within each
shallow zone. At the time of this writing, we do not yet understand this
fact. Further numerical exploration will be necessary, especially to see if
the ratio ∆/hf plays a role in these substructures.

In order to understand more precisely the electron/hole entanglement
properties described by this plot, we have chosen specific points for which
we will push the analysis further. The corresponding electronic Wigner
distribution functions are plotted on fig. 2.9.

The Floquet–Bloch spectrum

Let us review the Floquet–Bloch spectrum for the three points that
are marked in fig. 2.7. This figure presents the corresponding bands as
functions of the adimensionned quasi-energy ω/2πf and orders them
according to their averages, the a = 0 band being one with the highest
average.

The middle panel corresponds to the absolute minimum of the entropy
and therefore to the best operating point as a single-electron source.
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Figure 2.8: Cuts of the entropy SvN for a square voltage drive depicted
on fig. 2.7 as functions of eV /∆ for D = 0.12, D = Dopt and D = 0.8.
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Figure 2.9: Density plot of the full Wigner distribution function
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S (t, ω) for the square-voltage driven LPA source as a function of

t/T and ~ω/∆ for the three selected points appearing on fig. 2.7.
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Figure 2.10: Floquet–Bloch spectrum for the three selected points
appearing on fig. 2.7, in the case of a square-voltage driven LPA source.
Only the first three bands are represented, all the other ones being even
closer to zero.

Only one band gives eigenvalues close to one and it is flat. All the other
bands are really close to zero as expected.

Opening the dot (D = 0.8, right panel) leads to flat bands as expected
since at D = 1 it is really what is expected but we note that the
eigenvalues are almost unity and that the a = 1 band has value 0.02,
thus showing that we are departing from the ideal single-electron regime.

Closing the dot (D = 0.12, left panel) mostly changes the shape of the
a = 0 band which shows some curvature. Its average is equal to 0.57 which
shows that strong electron/hole coherences are expected. This point
corresponds to the local maximum of the entropy between D = 0 and
D = Dopt along eV = eVopt. At this point, the entropy is equal to 0.85 bit.
Starting from the optimal point, decreasing D increases the escape time of
the electron and hole excitations. In our previous publications, [Grenier
et al., 2011a; Roussel et al., 2017], we have argued that at some point,
the mesoscopic capacitor emits a quantum superposition of nothing and
of an elementary electron/hole pair on top of the Fermi sea. Decreasing
D would increase the amplitude of the emission of the electron/hole pair
from modulus very close to one to modulus zero and this explains the
behavior of the entropy with decreasing D at fixed eV /∆. However,
when D is decreased, inter-period coherences appear due to the band
curvature. This imply that this picture is only approximative.
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Electronic atoms of signals and coherences

In order to get a clearer view of the electronic state emitted by the
source, let us now extract the corresponding electronic atoms of signal.
Figure 2.11 presents the electronic atoms of signal associated with the
a = 0 Floquet–Bloch band for the three operating points considered
before.

As expected, the duration of each wavepacket increases with decreas-
ing D reflecting the fact that the escaping time from the dot is longer at
low QPC transparency. At the optimal value Dopt, we expect the source
to emit a wavepacket of the form

ϕ̃e(ω) =
Ne H(ω)

ω − ωe − iγe/2
, (2.81)

where Ne ensures normalization and γe denotes the electron escape rate
from the quantum dot which is given by γe = D∆/h(1−D/2) [Mahé et al.,
2008; Nigg and Büttiker, 2008]. We will plot the overlap of the extracted
electronic atom of sign to such a truncated Lorentzian in energy as a
function of D in our forthcoming paper [Roussel et al.]. This will show
when the simplified description of the ideal single-electron source, where
we consider a resonant level coupled to a truncated continuum [Grenier
et al., 2011a], is correct. Nonetheless, we note that for D = 0.12, the
electronic wavepacket remains limited to the firsf half period 0 . t . T/2.
At very low D, we expect this wavepacket to be the projection on
the space of single-particle states with positive energy of the dual of
the Martin–Landauer wavepacket, that is of an electronic wavefunction
constant on a time interval.

Since the bands are flat for D = Dopt and D = 0.8, no inter-period
coherence is expected as can be seen from the middle and right panels
of fig. 2.12. However, when closing the dot (D ≈ 0.12, left panel),
inter-period coherences for the electronic excitations start to unfold,
an expected consequence of the delocalization of the emitted electronic
excitations over more than a half period. This shows that the electronic
coherence time is given by the electronic escape time which, in this case,
exceeds the duration of an electronic atom of signal.

2.6.3 Sinusoidal drive

Let us now consider a sinusoidal drive is of the form Vg(t) = V sin (2πft)
at frequency f with amplitude V . In the present case, we will work
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Figure 2.11: Wigner distribution functions for the Floquet–Wannier
electronic atoms of signal corresponding to the a = 0 Floquet–Bloch
band represented as a function of t/T and ~ω/∆ for the three operating
points of fig. 2.7 in the case of a square voltage drive.
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Figure 2.12: Temporal coherences pn(∆l) between the electronic atoms
of signal of the a = 0, 1 and 2 Floquet–Bloch bands given by eq. (2.46)
as a function of ∆l for the three operating points of fig. 2.7 in the case
of a square drive.
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Figure 2.13: Density plot of the electron/hole entanglement entropy at
zero temperature for the mesoscopic capacitor operated with a sine drive
at frequency f such that ∆/hf = 20 as a function of eV /∆ and D.

at fixed drive frequency and dot geometry so that ∆/hf ' 20, which
corresponds to experimentally realistic conditions.

Electron/hole entanglement

Figure 2.13 presents a density plot of the entropy defined by eq. (2.78) as
a function of D and eV /∆ at fixed ∆/hf = 20. There are shallow zones
with minima in each square eV /∆ ∈]n, n + 1] (n ∈ N) and 0 < D ≤ 1.
A global minimum can be found at eVopt/∆ slightly less than 0.24 and
Dopt ≈ 0.38 and the corresponding entropy is very low: 0.06 bit. As
we shall see, this is a regime where the mesoscopic capacitor behaves
almost ideally, emitting exactly one electronic and one hole excitation
per period. Decreasing D from this value leads to an increase of the
entropy while decreasing leads to a local maximum (D ' 0.11) before a
decrease. For the three points located at the same value of eV /∆ and
corresponding to D = 0.8, D = Dopt and D ' 0.11, the corresponding
electronic Wigner functions are depicted on fig. 2.14. As for the square
drive case, interference fringes, characteristic from inter-period electronic
coherence as well as for electron/hole coherences, are visible for D ' 0.11
and to a lesser extent for D = 0.8 whereas they are much more discrete
for D = Dopt.

The novelty compared to the case of a square drive discussed in the



136 SIGNAL PROCESSING FOR ELECTRON COHERENCE 2.6.3

D = 0.11 D ≈ Dopt D = 0.8

-0.5 0.0 0.5 -0.5 0.0 0.5 -0.5 0.0 0.5

-0.4

0.0

0.4

t/T

~ω
/∆

-1

0

1

2

W
(e)
S (t, ω)

Figure 2.14: Density plots of the full Wigner distribution function
W

(e)
S (t, ω) for the sine-drive case as a function of t/T and ~ω/∆ for the

three selected points appearing on fig. 2.13.

previous section comes from the more pronounced local minima in the
first square 0 < D < 1 and 0 < eV /∆ < 1.

These minima correspond to quite low values of the electron/hole
entanglement entropy. They can also be seen on fig. 2.15 presenting cuts
for fixed value of D of SvN as functions of eV /∆. By running a simplex
minimization algorithm, we can find position and entropy value at each
minimum as summarized on table 2.1.

D eV /∆ SvN (bit)

1 0.29 0.09 0.10
2 0.38 0.24 0.06
3 0.41 0.40 0.06
4 0.43 0.55 0.10
5 0.42 0.70 0.18

Table 2.1: Positions and values of different entropy minima for the sine-
drive case, when one about one electron is emitted (eV /∆ ≤ 1).

We suspect that those minima come from an interference effect
between the rising time of the drive and the energy of the cavity. Testing
this hypothesis will require more numerical exploration, varying ∆/hf .
Of course, though not particularly involved numerically, since we need
to explore three dimensions (∆/hf , eV /∆ and D), such an exploration
will be delayed for our upcoming paper.

Figure 2.16 depicts the electronic Wigner function emitted by the
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Figure 2.15: Cuts of the entropy SvN in the sine-drive case depicted on
fig. 2.13 as functions of eV /∆ for D = 0.11, D = Dopt and D = 0.8.

source for these local minima. As expected, higher energy regions are
explored when increasing the amplitude of the drive eV /∆ but for each
of these local minima, we are quite close to the ideal single-electron
source regime.

There are also local minima in the second square where 1 < eVD/∆ ≤
2 but the corresponding entropy values are higher (above 0.3 bit). As
in the square case, in this zone we send three electrons and three holes
per period. As such, it is not surprising that the purity of the source is
lower, since we expect to excite more electron/hole pairs.

The Floquet–Bloch spectrum

Let us review the Floquet–Bloch spectrum for the three points that are
marked in fig. 2.13. The results are qualitatively similar to what is
observed in the case of a square drive: the middle and right panels
depict flat bands and the middle panel corresponds to the absolute
minimum of the entropy, shows one band with average very close to
one. This corresponds to the best operating point as a single-electron
source. Opening the dot (D = 0.8, right panel) also leads to flat bands
as expected but we note that the eigenvalues for the first band (which is
the only one that is non negligible) is only 0.83.

Exactly as in the square band case, going to a closed dot (D = 0.11,
left panel) leads to a curved a = 0 band with average 0.5 and the same
comments as for the square drive apply.
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Figure 2.16: Electronic Wigner function emitted by the mesoscopic
capacitor for the local minima of Svn appearing on fig. 2.13 in the
domain 0 < D < 1 and 0 < eV /∆ < 1.
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Figure 2.17: Floquet–Bloch spectrum for the three selected points in
the sine-drive case appearing on fig. 2.13. Only the first three bands are
represented, all the other ones being even closer to zero.
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Figure 2.18: Wigner distribution functions for the Floquet–Wannier
electronic atoms of signal corresponding to the a = 0 Floquet–Bloch
band represented as a function of t/T and ~ω/∆ for the three operating
points of fig. 2.13. This is the sine-drive case.

Electronic atoms of signals and coherences

Let us now discuss the electronic atoms of signal in this case as well as
their coherence properties. The spectra being very similar, the electronic
coherence properties are also quite similar as can be seen from fig. 2.19.
However, for a widely open dot, there is still one type of electronic atom
of signal with no inter-period correlations that is emitted per half period,
although it is emitted with a probability less than one. When closing
the dot, we first encounter an optimal point where only one is emitted
almost certainly: the mesoscopic capacitor behaves like an almost ideal
single-electron source and there are no inter-period electronic coherences.
Finally when closing the dot, the electronic excitation emitted by the
capacitor tends to delocalize over more than one period and we encounter
a point with a local maximum of electron/hole entanglement. In the limit
D → 0, the luminosity of the source decreases: the spectrum collapses
to zero and nothing is emitted.

In the end, the real influence of the drive lies into the form of the
electronic atoms of signals which, for the sinusoidal drive are depicted
on fig. 2.18. As expected, closing the dot leads to longer Wannier
wavepackets.

Figure 2.20 presents the dominant electronic atoms of signal for the
local optimal points in the quadrant 0 < D < 1 and 0 < eV /∆ < 1. As
we raise the drive amplitude, the Wannier wavefunctions explore higher
energies. For each minimum, their is a corresponding number of negative
bumps in the Wigner function.
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Figure 2.19: Temporal coherences pn(∆l) between the electronic atoms
of signal of the a = 0, 1 and 2 Floquet–Bloch bands given by eq. (2.46)
as a function of ∆l for the three operating points of fig. 2.13. This is the
sine-drive case.

4 5

1 2 3

-0.5 0.0 0.5 -0.5 0.0 0.5

-0.5 0.0 0.5
0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

t/T

~ω
/∆

0

1

W
(e)
S

Sine case optimal points (Wannier)

Figure 2.20: Dominant electronic atoms of signals emitted by the
mesoscopic capacitor for the local minima of Svn appearing on fig. 2.13
in the domain 0 < D < 1 and 0 < eV /∆ < 1.
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2.6.4 Lorentzian pulse trains

In this section, we consider an Ohmic contact driven by time dependent
voltage which is a T -periodic train of Lorentzian pulses of width τ0, each
of them carrying an electric charge α. The resulting time-dependent
voltage

V (t) =
αhf

e

sinh (2πfτ0)

sinh (πfτ0) + sin2 (πft)
(2.82)

has a d.c. component Vdc = αhf/e and an a.c. part Vac(t) = V (t)− Vdc
[Dubois et al., 2013a]. In this section, we shall present preliminary results
on how this picture is modified1. Unfortunately, due to lack of time, we
have not completed all the numerical implementations that would enable
us to treat any value of α and we shall thus only discuss integer values
of α.

When α is an integer, at zero temperature, we expect the spectrum
to be completely flat, since it is the classical drive case. Furthermore,
since, per period, there is an emission of α electrons, there will be α
bands that are constant to unity and, other bands will be zero. When α
is non-integer, we expect a richer spectrum. Notably, the bands will be
piecewise flat, with a step at α (mod 1).

For a single Lorentzian voltage pulse of duration τ0, whenever α is
a positive integer n, we have seen on section 1.4.4, page 58 that the
resulting many-body state is a Slater determinant built by adding on the
Fermi sea n mutually orthogonal electronic single-electron excitations
whose wavefunctions are given in the frequency domain by:

ϕn(ω) =
√
4πvF τ0 H(ω)Ln−1(2ωτ0) e−ωτ0 , (2.83)

where Ln denotes the nth Laguerre polynomial. In the limit where
Lorentzian pulses are well separated fτ0 � 1, we expect the electronic
atoms of signal to have a strong overlap with these mutually orthogonal
wavefunction. Of course, the question is to find these Levitonic atoms of
signals or Levitonoids.

Levitonic atoms of signals at α = 1

Let us first present the case α = 1. Figure 2.21 shows the Wigner function
of the train for different values of fτ0. We see that we can go from a

1. The case of negative α can be studied along the same lines provided one exchanges
the role of electrons and holes.
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Figure 2.21: Wigner function of a Leviton train for different ratio τ0/T .
As we raise τ0/T , the duration of each Leviton becomes longer and longer.
Once it is comparable to the period, what we see is an almost stationary
situation due to the raise of chemical potential.

situation from which each Leviton is quite separated to each other, to
a stationary situation, where the Levitons are so spread over multiple
periods that we only see the variation of the chemical potential due to
the d.c. part.

In the case α = 1, Moskalets has obtained explicit expression for
electronic atoms of signal associated with a Leviton train [Moskalets,
2015]. The corresponding wavepackets are not time-reversal invariant,
and lead to a Lorentzian current pulse of width τ0. This is manifestly
incompatible with the electronic atoms of signal obtained from our
numerical computations. The reason of this apparent discrepancy comes
from the ambiguity in the Wannier wavefunctions arising from the fact
that one can multiply each electronic Floquet–Bloch eigenvector |ψa,ω〉
by a phase that depends on the quasi-energy 0 ≤ ω < 2πf . The numerical
algorithms tends to produce wavepackets that have the smallest spreading
in time whereas the analytical expressions obtained by Moskalets possess
a Lorentzian current pulse. It is however possible to work out this
analytical expression to obtain a minimally spread, time-reversal invariant
wavepacket, that should be the same our algorithm finds:

ϕ(ω) =
1√
N

H(ω)e−ωnτ0 , (2.84)

where N is a normalisation factor, and ωn = 2πfbω/2πfc is the frequency
counted in multiple of 2πf . We will call this new wavepacket a minimal
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Levitonoid. The details of this derivation can be found in appendix B.2.
We can see on fig. 2.22 that this analytical form and the one found by
the algorithm match perfectly.
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Figure 2.22: The electronic atoms of signal of a train of charge α
Lorentzian pulses for α = 1 and different values of fτ0. When fτ0 � 1,
the wavepacket we obtain is very similar to a Leviton. When fτ0 ' 1,
we have a Martin–Landauer wavepacket. The atoms of signal found by
our algorithm (lower pane) fits perfectly the one predicted analytically
(upper pane).

When fτ0 � 1, the minimal Levitonoid should approach the Leviton
introduced by eq. (2.83). It is quite straightforward to see on the formula,
since when we lower fτ0, the steps of width 2πf will become smaller,
doing a better staircase approximation of the decaying exponential. We
might wonder how we depart from this regime. For this, we can compute
the overlap between the Levitonoid ϕtrain and a single Leviton of the
same duration ϕunique

|〈ϕtrain |ϕunique〉|2 =
1

πfτ0

1− e−2πfτ0

1 + e−2πfτ0
. (2.85)

In the limit fτ0 � 1, the overlap departs quadratically from unity.
In the case where fτ0 ' 1, the overlap between the minimal Levitonoid

and the single Leviton tends to zero as 1/πfτ0. We see on the left of
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fig. 2.21 that the drive induces almost solely a d.c. shift, without much a.c.
contribution. In this case, it seems natural to compare our Levitonoids
to the Martin–Landauer wavepacket, centered around ωe = πf and of
width γe = 2πf . We see that this overlap goes exponentially to one as
fτ0 goes to infinity

|〈ϕtrain |ϕML〉|2 = 1− e−4πfτ0 . (2.86)

Due to the 4π factor, the Levitonoid approaches extremely rapidly the
Martin–Landauer wavepacket. For the examples discussed above, when
fτ0 = 1/5, the overlap is around 92 %. At fτ0 = 1, the overlap is unity
up to the sixth significative digit, making the differentiation between a
Levitonoid and a Martin–Landauer impossible in practice.

Finally, we can use those behaviors to see the difference in terms of
typical duration between the minimal Levitonoids, and the wavepack-
ets introduced by Moskalets. For Moskalets’ wavepackets, the typical
duration is always τ0. In our case, the typical duration is τ0 when τ0 is
shorter than the period. However, when τ0 is increased above the time
period, our wavepacket will tend to a Martin–Landauer, and its typical
duration will be the time period.

Integer values of α

We have used the case α = 1 to check the validity of our algorithm. We
can now focus on integer values of α > 1. In these cases, the bands
will be degenerate, forcing us to search a set α Wannier wavefunctions.
We will concentrate here on α = 2 and α = 3. Figure 2.23 presents the
Wigner function of the electronic atoms of signals found by the algorithm
for the same values of fτ0 as before.

Exactly as before, the electronic atoms of signal have a typical width
that goes from τ0 to T , as fτ0 increases. The wavepackets are however
not time-reversal invariant. They rather come by symmetrical pairs, that,
altogether, restore the time-reversal symmetry (except for the central
pair when α is odd, which is time-reversal invariant).

We can compare the Wigner functions given by the algorithm to the
Wigner functions of the different Levitons shown in fig. 1.12. A first strik-
ing difference is that Leviton wavepackets are invariant by time-reversal
symmetry, which is not the case for our wavepackets. Another difference
is that the average current of Leviton wavepackets is a Lorentzian of
duration τ0 and charge −e. Here, the average current is split into smaller
pieces, as can be seen on fig. 2.24. This explains why our atoms of signal
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Figure 2.23: The electronic atoms of signal of a train of charge α
Lorentzian pulses for α = 2 and α = 3 for the same values of fτ0
is in fig. 2.22.
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Figure 2.24: Currents of the atoms of signal pictured in fig. 2.23.

are different from Levitons of higher orders, even when fτ0 � 1. In
fact, we are stumbling on the Wannier function ambiguity in the case
of several degenerate bands. In the present case, when α is an integer,
the Floquet–Bloch spectrum precisely consists of α degenerate bands
with value 1. In this case, one expects the single-electron coherence to
be of the form of the single-electron coherence of a Slater determinant
containing exactly n electronic excitations on top of the Fermi sea. But
such a Slater determinant can be represented in terms of diverse sets of
wavefunctions: applying an element of SU(n) to the original family of n
electronic wavefunctions building this Slater determinant gives another
orthonormal family of electronic excitation describing exactly the same
n-electron excitation.

Once again, when fτ0 ' 1, we find that the suitable wavepackets
are Martin–Landauer wavepackets. It is expected, since in this case, the
drive induces almost a stationary situation. To optimize the spreading,
the Martin–Landauer must be as large as they can be in frequency.
What we see is that there are α Martin–Landauer wavepackets that
are separated in time by a duration T/n, and whose energy widths are
γe = 2παf . This description would be the one for a T/n-periodic system,
which would have a d.c. bias corresponding to a single electron added
per period.
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The structure of the spreading functional is not as well behaved as
it is in the commutative case. In particular, it is quite flat around the
minima, and possesses some non-global local minima. One must thus
take care when carrying out the numerical minimization procedure in
this case, that the minimum found is the good one.

Perspectives

In order to complete the program sketched at the beginning of the present
section, an exploration of the deformation of the Floquet–Bloch spectrum
when α increases continuously is necessary. However this requires a
careful numerical exploration since when α is not an integer, we expect
electron/hole excitations to appear and their number to diverge when
fτ0 → 0 [Dubois et al., 2013a].

An interesting perspective would then be to study electron fraction-
alization [Grenier et al., 2013] using our signal processing technique and,
in particular, look for the behavior of the Floquet–Bloch spectrum when
a Leviton train experiences fractionalization under the effect of Coulomb
interactions as will be discussed in the next chapter.

2.7 A quantum electrical current analyzer

In this section, I will present the application of our signal-processing
algorithm to real experimental data. This constitutes the experimental
demonstration of the analysis of quantum electrical currents discussed
in the present chapter. More specifically, we perform the analysis of a
quantum electrical current arising from the application of a sinusoidal
drive VS(t) = VS cos(2πft) to a quantum Hall edge channel when the
frequency of the drive and the drive’s amplitude are such that evS and
hf are slightly above kBTel (quantum regime). Electronic tomography
has also been performed on a quantum current in the quasi-classical
regime in order to compare both situations and show clear evidences of
non classicality such as negativities of the electronic Wigner function.

2.7.1 Quantum tomography

The first step is the reconstruction of single-electron particle using the
tomography protocol described in section 1.6. This is a central part of
the PhD work of A. Marguerite in G. Fève’s group in Paris. I refer the
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reader to his PhD thesis [Marguerite, 2017] for details on the experimental
setup. Here, I will mainly describe the main results.

The point is to reconstruct an unknown single-electron coherence
by probing its overlap with a suitable family of single-electron coher-
ences emitted by probes Pn. As discussed in section 1.6, the generic
protocol proceeds by reconstructing the time dependance of the unknown
T -periodic Wigner function ∆W

(e)
S (t, ω) through its Fourier series, that

is harmonic by hamonic.
Let us first focus on the n = 0 harmonic, ∆W (e)

S,0(ω), which represents
the excess source electronic distribution function. This time averaged
quantity can be extracted from eq. (1.100) by using a d.c. bias VDC
as the probe P0 so that ∆W

(e)
P0

(t, ω) = feq (ω − ωDC) − feq(ω) (with
ωDC = −eVDC/~) is very close to 1 for 0 ≤ ω ≤ ωDC and to 0 elsewhere.
Figure 2.25 (upper left panel) represents the excess noise ∆S as a func-
tion of VDC for various sinusoidal source drives of increasing frequency
(1.75 GHz, 9 GHz and 20 GHz) with drive amplitudes (Vs = 28 µV at
f = 1.75 GHz, 31 µV at 9 GHz and 38 µV at 20 GHz) chosen to pro-
duce similar partition noise (around 2 × 10−29 A2 Hz−1) at VDC = 0 (P0

switched off). The partition noise is suppressed to zero when the d.c.
bias is increased but in different ways for different frequencies. ∆W

(e)
S,0(ω)

can then be obtained via the derivative of ∆S with respect to ωDC [Gre-
nier et al., 2011a; Gabelli and Reulet, 2012]. The obtained values of
∆W

(e)
S,0(ω) are plotted on the upper right panel of fig. 2.25. The three

curves show that as the drive frequency increases, the spectral weight is
shifted towards higher frequencies.

In the quasi-classical case (f = 1.75 GHz), the typical energy at
which electrons (respectively holes) are promoted above (respectively
below) the Fermi energy is given by the amplitude eVS = 28 µeV of
the chemical potential variations. On the contrary, in the quantum
regime (f = 20 GHz so that hf > kBTel), electron/hole pair creation
results from the absorption of photons at energy hf [Tien and Gordon,
1963; Rychkov et al., 2005]. The excess electron distribution function
presents square steps of width hf = 83 µeV and amplitude (eVS/hf)

2/4,
which is the probability to absorb one photon from the drive [Tien and
Gordon, 1963]. The experimental results compare very well with photo-
assisted noise calculations [Rychkov et al., 2005] (plain lines) without any
adjustable parameters, thus confirming the robustness of the measurement
of ∆W (e)

S,0(ω).
As explained in section 1.6, accessing the time dependence of W (e)
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Figure 2.25: Upper left panel: Excess noise ∆S as a function of d.c bias
ωDC. The plain lines represent numerical calculations for VS = 28 µV,
f = 1.75 GHz, VS = 31 µV, f = 9 GHz, and VS = 38 µV, f = 20 GHz
and Tel = 100 mK. Upper right panel: electronic distribution function
∆W

(e)
S,0(ω). Plain lines represent numerical calculations (same parameter

as the left panel). Lower panel: ∆W
(e)
S,n(ω) for f = 10 MHz (left) and

f = 9 GHz (right). The plain lines represent numerical calculations with
Tel = 100 mK, VS = 33 µV (f = 10 MHz) and VS = 31 µV (f = 9 GHz).
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requires measuring non-zero harmonics ∆W
(e)
S,n6=0. Fortunately, due to

the smoothing introduced by the non-zero electronic temperature, an
accurate reconstruction is usually achieved with |n| ≤ 3. As explained
before, accessing the nth harmonic requires a probe Pn whose Wigner
distribution evolves periodically in time at frequency nf and, as explained
before, the point is to look at the linear response of the excess current
noise to a probe Pn of the form VPn(t) = VPn cos (2πnft+ φ). Changing
the phase φ of the probe allows us to scan the temporal axis, whereas
the width of ∆W (e)

Pn
along the energy axis is fixed by the width of gn,

given by the maximum of kBT and nhf . As in the n = 0 case, varying a
d.c. bias VDC on top of the a.c. probe excitation enables scanning the
energy axis. As explained in section 1.6, the real and imaginary parts of
∆W

(e)
S,n can be directly related to the variations of ∆S as a function of

the phase φ and d.c. bias VDC of the probe Pn.
Figure 2.25 presents <(∆W (e)

S,n(ω)) (=(∆W (e)
S,n(ω)) = 0) for n =

0, 1, 2, 3 for a quasi-classical drive f = 10 MHz (lower left panel), and
n = 0, 1, 2 (n = 3 falls below the experimental resolution) for a quantum
drive f = 9 GHz (lower right panel). While the n = 1 harmonics take
very close values as explained by the similar amplitudes of the drives
(VS = 33 µV for f = 10 MHz and VS = 31 µV for f = 9 GHz), the n = 0,
2 and 3 harmonics are lower in the high frequency case compared to
the low-frequency one. Indeed, these terms are related to multiphoton
absorption/emission processes, whose strength increases with the ratio
α = eVS/hf . This ratio is very high in the quasi-classical case (α ≈ 800)
and smaller than one in the quantum one (α ≈ 0.8) thus explaining the
smaller amplitude of the harmonics n 6= 1. After extracting all relevant
∆W

(e)
S,n(ω), we can combine them to reconstruct the full Wigner distribu-

tion:

W
(e)
S (t, ω) = feq(ω) + ∆W

(e)
S,0(ω)

+ 2

N∑
n=1

<(∆W (e)
S,n(ω)) cos (2πnft),

(2.87)

where the sum extends to N = 3 at f = 10 MHz and N = 2 at f = 9 GHz
and where =(∆W (e)

S,n(ω)) = 0 has been used. The two reconstructed
Wigner distributions are represented on fig. 2.26 (upper panel).

Apart for small discrepancies related to the deconvolution process, the
quasi-classical case is very close to the expected equilibrium distribution
function with a time varying chemical potential µ(t) = −eVS cos (2πft)
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Figure 2.26: Upper panels: experimental data of W (e)
S (t, ω) in the

quasi-classical (f = 10 MHz, left panel) and quantum (f = 9 GHz, right
panel) cases. Middle panels: theoretical calculations of W (e)

S (t, ω) in the
quasi-classical case f = 10 MHz (left panel) and in the quantum case
f = 9 GHz (right panel). Lower panels: cuts of W (e)

S (t, ω) at constant
energy ~ω = 11 µV (left panel) and ~ω = −11 µeV (right panel). Blue
points are for f = 10 MHz, red points for f = 9 GHz, the plain lines
(cyan for f = 10 MHz, brown for f = 9 GHz) represent cuts of the Wigner
functions calculated numerically (middle panel).
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(see middle left panel). In particular, it is basically constrained to values
between 0 and 1. In contrast, in the quantum case, the Wigner distribu-
tion can take values that are strongly negative or that are well above one.
Consequently, single-particle properties are no longer described in terms
of a time varying electronic distribution function, in good agreement
with theoretical predictions from a Floquet calculation (middle right
panel).

The difference between the classical and quantum regimes can be
understood by plotting cuts of the Wigner distribution at constant energy
~ω = ±11 µeV (lower panels of fig. 2.26). In the classical case the sizeable
values of the high harmonics of the Wigner distribution are necessary to
reconstruct an equilibrium Fermi distribution which varies sharply from
0 to 1. On the contrary, high harmonics are suppressed in the quantum
case such that W (e)

S (t, ω) varies in a much smoother way. This explains
the overshoots (undershoots) above 1 (below 0) which agree well with
theoretical expectations (plain lines).

2.7.2 Signal processing of the experimental ∆G(e)
S

The second step of quantum current analyzis is the main topic of the
present chapter: the extraction of individual electronic wavepackets from
the reconstructed Wigner distribution.

In order to capture all excitations present with the quantum electri-
cal current, the first step is to compute the excess Wigner distribution
∆0W

(e)
S (t, ω) = W (e)(t, ω) − H(−ω), defined with respect to the zero

temperature Fermi sea described by the electronic distribution func-
tion H(−ω). As explained before, this reference choice ensures that all
excitations, including the thermal ones, are extracted by our algorithm.

Figure 2.27 presents the result of this analysis on the experimental
data obtained for the quantum sinusoidal drive at f = 9 GHz. As
expected, the excess coherence is strongly dominated by one electron
and one hole wavepacket which, here, we respectively denote by ϕ(e) and
ϕ(h). Their Wigner representations are plotted on the upper and middle
panels. The hole is shifted by half a period with respect to the electron
and its energy dependence is almost the same as that of the electron’s at
positive energy, as can be seen from their electronic distribution functions
f |ϕ(e/h)(ω)|2. Note that these functions present almost flat plateaus of
width hf : deviations from flatness express that atoms of signal at finite
temperature are indeed contaminated by thermal excitations compared
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Figure 2.27: Left panel: Wigner distribution functions Wϕ(e/h)(t, ω) =∫
ϕ(e/h)(t+ τ

2 )ϕ
(e/h)∗(t− τ

2 )e
iωτ dτ for the dominant electronic ϕ(e) and

hole ϕ(h) atoms of signal in the f = 9 GHz case. The panels in the
margins of the colour plots represent the time |ϕ(e/h)(t)|2/f and energy
f |ϕ(e/h)(ω)|2 distributions obtained by integration of Wϕ(e/h)(t, ω) over ω
and t. Right panel: moduli of the inter-period coherence |g(e)(l)| between
electronic atoms of signal and |g(h)(l)| for the holes and electron/hole
inter-period coherence |g(eh)(l)| (upper right panel: experimental data at
Tel = 100 mK; lower right panel: numerical simulation at Tel = 0 mK).
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to the zero temperature case.
The moduli of the corresponding inter-period coherences are depicted

on the right panel: they extend beyond one period as expected since
the thermal coherence time of electron h/kBTel ' 0.5 ns is roughly 4
times larger than the period. Since g(eh)(l − l′) 6= 0 and both g(e)(0) '
g(h)(0) ' 0.27 6= 1 we are not in the single-electron regime. The specific
role of thermal fluctuations is illustrated by comparing the data with the
numerical simulation of the inter-period coherences in the zero tempera-
ture case (see right column of fig. 2.27). The probabilities g(e)(0) and
g(h)(0) that the electronic and hole atoms of signal are populated are in-
creased when the temperature increases going from 0.16 (Tel = 0 mK) to
0.27 (Tel = 100 mK), reflecting the contamination by thermal excitations
populating ϕ(e/h). Thermal fluctuations also decrease the electron/hole
coherence |g(eh)(0)| with respect to electronic g(e)(0) and hole g(h)(0)
excitation numbers, showing how the coherent superposition between
the equilibrium state and the creation of an electron/hole pair is progres-
sively destroyed by increasing the temperature.

2.8 Summary

To conclude, we have demonstrated a quantum electrical current analyzer
which directly extracts the single electron and hole wavefunctions, as
well as their emission probabilities and coherence from one emission
period to the other. Assuming a minimal knowledge on the state of
the electron fluid, it can be used to characterize any quantum electrical
current (although sinusoidal drives have been used experimentally for
demonstration).

It also explicitly takes into account the role of thermal excitations
and their progressive contamination of the electron and hole wavefunc-
tions. Although the chirality imposed by the high magnetic field used
here enables the separation between the source and probe ports, the
same principle could lead to quantum current analysers for any low-
dimensional conductor that can be weakly tunnel-coupled to a probe
port for noise measurements [Arakawa et al., 2015]. In this perspective,
our analyzer appears as a crucial tool for quantum technologies based on
the propagation of time-dependent electrical currents by enabling the
control of the quantum state of the elementary excitations transferred
across nanoscale conductors. It is the tool of choice for single-electron
source characterization or for identifying single-particle wavefunctions
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generated in interacting conductors [Marguerite et al., 2016b].
Finally, our quantum analyzer may also offer a way to access to the

recently studied electron/hole entanglement [Dasenbrook and Flindt,
2015; Hofer et al., 2016] and, supplemented by other measurements
[Thibierge et al., 2016; Thibierge, 2015], to quantify more precisely
the importance of interaction-induced quantum correlations. Finally, it
can establish a bridge between electron and microwave quantum optics
[Grimsmo et al., 2015; Virally et al., 2016], by probing the electronic
content of microwave photons injected from a transmission line into a
quantum conductor. However, this requires establishing a bridge between
the coherence properties of electrons and the coherence of the emitted
radiation. Although this is not the main topic of the next chapter, we
shall see that for quantum Hall edge channels, bosonization precisely
provides an answer to this important question.
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Chapter 3

Electrons, plasmons and
photons

3.1 Introduction

The present chapter deals with the effects of interactions between the
electron fluid and its environment, as well as with the effect of interactions
between the electrons themselves (Coulomb interactions).

Two physical questions will be addressed: the first one is to under-
stand the radiation emitted by quantum electrical currents within their
electromagnetic environment. In particular, can we relate the coherences
properties of the emitted radiations to the electronic coherences that
have been discussed in chapter 1?

The second question is to determine the effect of interactions within
the quantum Hall edge channel as well as with its environment on the
properties of electronic coherence. This is the problem of electronic
decoherence which is of crucial importance in condensed matter physics.

As we shall see, bosonization which is exact in chiral 1D channel
enables us to discuss both of these problems in a single framework which
relies on the use of quantum optics for bosonic modes corresponding to
the quantized charge density waves propagating along the edge channel.
Assuming that the environment of the edge channel is in a linear response
regime with respect to the charge density modulation of the edge enables
us to develop an approach in which interactions are described in terms
of elastic scattering of bosonic modes.

157
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3.2 Electrons and plasmons

We will now discuss how one can describe the state of the electronic fluid
in terms of bosonic modes, called plasmons. For the sake of pedagogy, I
will focus on the physical intuition rather than on a rigorous mathematical
derivation. A reader interested by a more rigorous proof can read [Gogolin
et al., 1998; Giamarchi, 2004; von Delft and Schoeller, 1998; Stone, 1994].

3.2.1 From electrons to plasmons

The bosonization formalism connects the electronic degrees of freedom
to bosonic degrees of freedom representing charge density wave within
the system. We will then first consider those charge density waves, also
known as edge magnetoplasmons or plasmons, in terms of electrons.
Then we will go the other way around and show how we can describe a
single electron on top of the Fermi sea in terms of plasmonic degrees of
freedom.

Let us consider the electronic particle current operator. Because of
the linear dispersion relation of electrons, its finite-frequency components
can be written as

ie(ω > 0) =

∫
c†(ω′ − ω)c(ω′)dω′, (3.1a)

i†e(ω > 0) =

∫
c†(ω′ + ω)c(ω′)dω′. (3.1b)

Let us now focus on the non trivial commutator of the operators ie(ω > 0)

and i†e(ω′ > 0):

[
ie(ω1), i

†
e(ω2)

]
=

∫ (
δ(ω2 + ω′

2 − ω′
1)c

†(ω′
1 − ω1)c(ω

′
2) (3.2a)

− δ(ω′
1 − ω1 − ω′

2)c
†(ω2 + ω′

2)c(ω
′
1)

)
dω′

1dω′
2. (3.2b)

At this stage, one must be really cautious about how to treat this differ-
ence of infinite sums of operators. If we split the difference and integrate
each term independently, we can end up with a trivial commutation rela-
tion, because it corresponds to a difference of two infinite quantities. The
proper way to regularize this expression is to keep both terms together
under the integral until we make the divergence explicit using normal
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ordering:[
ie(ω1), i

†
e(ω2)

]
=

∫ (
:c†(ω2 − ω1 + ω′)c(ω′):

− :c†(ω2 + ω′)c(ω1 + ω′):
)

dω′
(3.3a)

+

∫ (〈
c†(ω2 − ω1 + ω′)c(ω′)

〉
F

−
〈
c†(ω2 + ω′)c(ω1 + ω′)

〉
F

)
dω′.

(3.3b)

Each term of the difference (3.3a) being normal ordered possesses a finite
integral, and thus the difference is zero. Only difference (3.3b) remains.
We can replace correlator with its value and we obtain an integrand
that is δ(ω2 −ω1)g(ω

′) where g(ω′) is zero everywhere except in [−ω1, 0],
where it is one. Finally, we obtain[

ie(ω1), i
†
e(ω2)

]
= δ(ω2 − ω1)ω1. (3.4)

Introducing the bosonic modes

b(ω > 0) =
1√
ω
ie(ω) =

1√
ω

∫
c†(ω′ − ω)c(ω′)dω′ (3.5a)

b†(ω > 0) =
1√
ω
i†e(ω) =

1√
ω

∫
c†(ω′ + ω)c(ω′)dω′ (3.5b)

it is trivial to show that they satisfy the canonical commutation relations:[
b(ω), b(ω′)†

]
= δ(ω − ω′)1. (3.6)

3.2.2 From plasmons to electrons

Let us now express the fermionic operators in terms of the bosonic ones.
But before doing this, we will focus on a particular class of bosonic
states, the coherent plasmonic states which are defined as in optics,
as eigenstates of the annihilation operators b(ω > 0). Note that they
are multimode coherent states and thus are parametrized by a function
ω 7→ Λ(ω), where Λ(ω) = ie(ω)/

√
ω. These states are very important

since they are generated by a classical driving.
Actually the idea behind the bosonized expression of a fermion is

simple: if we inject a time-resolved electron at time t0 on top of the
Fermi sea, its average electrical current is a percussional pulse emitted
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at time t0. If we assume that it is a quasi-classical plasmon states, its
creation should correspond to the action of a displacement operator for
the bosonic modes. A first guess would be

ψ(t) ∝ D[Λt], (3.7)

where Λt(ω) = eiωt/
√
ω to ensure that the average current is percussional.

However, this expression has two flaws.
First, bosonic operators do not change the charge. In other words,

the right-hand side of eq. (3.7) do not capture the d.c. part of the current.
To cure this pathology, we introduce Klein operator U , whose effect is
to remove one electron by shifting the chemical potential of the fluid,
allowing to visit different charge sectors. This operator is unitary and
the operator U † raises the number of fermions by one. If there are several
flavors of chiral fermions, as in presence of several edge channels, each
flavor has its own Klein operator Ui. Two operators associated with
different species must anticommute so that fermionic operators of different
flavors also do. This cures the first pathology we have mentioned and
also provides the fermionic operators with the proper anticommutation
relations in case of several flavors1.

The second flaw is that the right-hand side of eq. (3.7) is dimensionless
whereas 1D chiral fermions have dimension [L]−1/2. To fix this, we
introduce a length a, which as we will see will play the role of a UV
cutoff, so that:

ψ†(t) =
U †

√
2πa

D[Λt] Λt(ω) = eiωt/
√
ω. (3.8)

To clarify the physical meaning of this length a, let us compute first-
order coherence of the Fermi sea at zero temperature in the bosonization
formalism 〈

ψ†(t′)ψ(t)
〉
F
=

1

2πa
〈−Λt′ | −Λt〉 . (3.9)

The scalar product is a trivial generalization of the single-mode scalar
product:

〈−Λt′ | −Λt〉 = exp
(∫ ∞

0

(
eiω(t−t′) − 1

)
dω
)
. (3.10)

1. Since Klein operators are unitary, they do not enforce anticommutation relations
for a given fermionic flavor. Actually, these relations come from the displacement
operators themselves. We won’t demonstrate this result, but the method for this
should be clear from what follows.
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Many of regularization problems in bosonization can be summarized by
the previous equation. The integral has UV and IR divergences which
we regularize using the fact that, for <(τ1) > 0 and <(τ2) > 0:

exp
(∫ ∞

0
(e−ωτ1 − e−ωτ2)

dω
ω

)
=
τ2
τ1
. (3.11)

We can thus add a small real part τ = 0+ to eq. (3.10), which will play
the role of a UV cutoff. Using τ1 = i(t− t′) + τ and τ2 = τ , we obtain:

1

2πa
〈−Λt′ | −Λt〉 =

i
2πa

τ

t− t′ + iτ
, (3.12)

which coincides with the expression of G(e)
F (t, t′) obtained chapter 1 if we

identify a = vF τ , thus confirming its interpretation as a UV cutoff.
In bosonization, our basic block will thus be single-electron state

ψ†(0) |F 〉. Its Wigner function is depicted on the right part of fig. 3.1.
Any single-electron excitation on top of the Fermi sea is obtained as
a superposition of such states, injected at different times. The first
iteration of this process is shown on the left part of fig. 3.1.

ψ†(t0)|F 〉 1√
2
(ψ†(t1) + ψ†(t2))|F 〉

-3 0 3 -3 0 3

0

5

10

t

ω

Figure 3.1: Wigner functions of simple bosonic states. On the left, we
have the Wigner function of a time-localized single-electron state. Since
there is no particular timescale here, the units are arbitrary (the only
constraint is that ω must be consistent with t). This state is also a
coherent plasmonic state. On the right, we have the Wigner function of
an electron delocalized at t1 and t2. This is a simple superposition of
plasmonic coherent states.
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3.2.3 Single-electron states as Schrödinger cats

The general expression for the state involving an arbitrary single-electron
excitation on top of the Fermi sea is

ψ[ϕe] |F 〉 =
∫
ϕe(t)ψ

†(t)dt |F 〉 = U †
∫
ϕe(t) |Λt〉 dt, (3.13)

where each |Λt〉 describes a percussional current at time t. From the
bosonization perspective, an electron emitted on top of the Fermi sea is
just a continuous quantum superposition of elementary, single-electron,
classical currents on top of |F 〉. In the rest of this chapter, we will
consider only zero-temperature equilibrium states. The bosonization
description will act on different vacua depending on the channel we
consider. For the channel in which the electron is injected, the vacuum
will correspond to the superselection sector with one electron added on
top of |F 〉, namely U † |F 〉. For the other channels, it will be the standard
Fermi sea. We can do this distinction because of the absence of tunnel
effect. Furthermore, in the quantities we will look at throughout this
chapter, the Klein factors always come by self-cancelling pairs.

We might ask about the transcription of thermally excited Fermi sea
in terms of bosonic states. This will notably be necessary in section 4.4.
A major difficulty is that at non-zero temperature, fermionic state mixes
several charge sectors, and cannot be described purely in terms of elec-
tron/hole pairs. However, in the thermodynamics limit, the chemical
potential is not shifted by the addition of a single electron and this is
why we can forget about Klein factors when describing thermally excited
states, since in the quantities we will look at, the contribution arising
from the mixing of different charge sectors will vanish. In finite-size sys-
tems, this abuse will have dramatic consequences since even adding a
single electron changes the chemical potential.

An example of such a reconstruction in terms of elementary currents
can be seen of fig. 3.2: it is the Landau quasi-particle introduced in
section 1.4.4, page 55. The convergence towards this target state is clear,
though not very quick, as we add up more and more contributions to the
quantum superposition. A very interesting feature of this reconstruction
process is that the Wigner function of each member of the quantum
superposition has contributions close to the Fermi sea. However, the
final result is localised around the Landau quasi particle’s energy. This
clearly shows how localization in energy space comes from destructive
interferences between each contribution ψ†(t) |F 〉 which, on the contrary,
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Figure 3.2: Reconstruction of the Landau quasi-particle. Each Wigner
function shows a superposition with a finite number of terms (indicated
on top of the graph). The time of each term is shown by a tick on the
t-axis. As we increase the number of terms, we converge to the target
state.

are delocalized in energy.
This picture of an electron as a Schrödinger cat of classical current

a.c. pulses on top of U † |F 〉 will be essential in our analysis of electronic
decoherence.

3.3 Quantum optics of current noise
A complementary view on bosonization can be obtained by considering
the radiation emitted by a quantum electrical current propagating along
a quantum Hall edge channel. As is well known to experimentalists, the
edge channels electronic or plasmonic modes are not directly accessed
in experiments. The edge channel is coupled to a transmission line or
coaxial cable in which an electrical signal propagates up to amplifiers and
then, in the end, to the acquisition system. Within a coaxial cable, the
electrical signal is propagated through hybrid light matter modes that
are called “photon” since they usually correspond to the electromagnetic
modes propagating along the coaxial cable seen as a waveguide.
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In this section, we explore the properties of the emitted radiation
by developing a quantum optics of current noise in quantum Hall edge
channels that is the counterpart for quantum Hall edge channels of the
recent work by Grimsmo et al. [2015]. As will be explained, the simplicity
of quantum Hall edge channel enables us to directly understand the
relation between the quantum optical properties of the emitted radiation
and electron quantum optic coherence properties of the electrical current.

3.3.1 Plasmons and photons

We start by describing a simple model of antenna to collect the emitted
radiation. We will discuss its coherence properties, showing that, under
reasonable circumstances, probing the radiation is equivalent to probing
the edge-magnetoplasmon modes that propagate along the chiral edge
channel.

Plasmon-to-photon conversion

In chapter 1, we have introduced two devices through which this radiation
can be collected: the first one is a top gate capacitively coupled to the
edge channel and the second one is the Ohmic contact. Since we want to
conserve quantum coherence of plasmonic excitations, we want to avoid
dissipation and therefore, we shall focus on the direct capacitive coupling
to the transmission line instead of the Ohmic contact.

Figure 3.3: Plasmon-to-photon conversion. We can convert an incoming
plasmonic state (white-blue ripple, on the left) into a photonic state
(orange-red ripple on the right), by using a top gate that will act as
a capacitive antenna which is connected to a transmission line. The
efficiency of such a conversion is not one, so we expect that there are
remaining outgoing plasmonic excitations (white-blue ripple on the right).

The capacitive coupling between an edge channel and a transmission
line is depicted on fig. 3.3. Using an input/output formalism for describing
the transmission line [Yurke, 1984] and the edge channel, it can be
shown that the capacitive coupling region acts as an elastic scatterer of
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plasmonic and photonic modes into outgoing plasmonic and photonic
modes [Degiovanni et al., 2009]. Therefore, the end result is a linear
relation between the incoming modes for plasmons bin

pl(ω) and for photons
bin

ph(ω) and their outgoing counterparts:(
b
(out)
pl (ω)

b
(out)
ph (ω)

)
=

(
t(ω) r(ω)

−r∗(ω) t(ω)

) (
b
(in)
pl (ω)

b
(in)
ph (ω)

)
, (3.14)

where t(ω) and r(ω) are frequency-dependent transmission and reflexion
amplitudes that depend on the details of the geometry of the capacitor
[Grenier, 2011]. The converter described here is thus nothing more than a
capacitive antenna. Of course, if one wants to convert bosonic excitations
efficiently, a suitable sample design is required for ensuring the desired
properties in the experimentally relevant bandwidth. When there is no
leak towards others degrees of freedom, energy conservation implies that
|t(ω)|2 + |r(ω)|2 = 1.

It is interesting to compare the present discussion to the one of
Grimsmo et al. [2015]. In this paper, the authors consider the case of
a two-port quantum conductor such as a tunnel junction connected to
transmission lines. In order to study the properties of the radiation emit-
ted by the conductor, they derive an input/output relation connecting
the outgoing electromagnetic modes to the electrical current operator
flowing through the conductor. The philosophy is extremely similar to
the one developed here except that coupling is different: in the quantum
Hall situation discussed in this thesis, the electronic degrees of freedom
are capacitively coupled to the photonic ones whereas, in their case
eq. (2) of their work expresses continuity of the electrical current when
one goes from the conductor to the transmission lines. But in their case,
because the quantum conductor is not chiral contrary to quantum Hall
edge channel case, the current operator within the quantum conductor
which appears as a source for the radiation in eq. (2), also depends on
the incoming electromagnetic radiation. There are two ways to deal with
this backaction effect: first, when there is a strong impedance mismatch
between the conductor’s impedance at the frequencies under considera-
tion, the incoming vacuum fluctuations of the supposed not too-exotic
drive cannot influcence the conductor. This is the case considered in
[Beenakker and Schomerus, 2001] and we think that this approximation
is also valid when considering the current captured by an Ohmic con-
tact maintained at zero potential (but since it would require a better
understanding of dissipative effects within an Ohmic contact, we do not
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explore this more). In the case where the impedance mismatch is not
as strong, which is the case in some experiments, one has to consider a
regime in which the backaction is weak. This is the situation considered
by Grimsmo et al. [2015]. We shall not further comment on this but the
case considered here is, in some sense much simpler.

Photonic degrees of coherence

The simple linear relation 3.14 between the outgoing photonic modes and
the incoming photonic and plasmonic ones enables us to relate outgoing
photonic correlators to the edge-magnetoplasmonic ones. Assuming the
incoming photonic modes are populated with the vacuum, the outgoing
average electromagnetic amplitude is directly connected to the average
edge-magnetoplasmon amplitude: 〈b(out)

ph (ω)〉 = t(ω)〈b(in)pl (ω)〉. If we now
consider the coherences of the outgoing photonic modes (for simplicity,
we will denote the incoming plasmonic ladder operators b(ω) and b†(ω)),
we see that

G
(1)
ph,out(ω, ω

′) = t(ω)t(ω′)∗ tr(b(ω)ρ b†(ω′)) (3.15)

because all photonic coherences of the vacuum are vanishing. This
relation as well as the analogous ones for higher order photonic coherences
imply that the photonic degrees of coherences defined by Mandel [Fox,
2006] are directly equal to the same quantity for the plasmonic modes:

g(n)(ω|ω′) =
G

(n)
ph,out(ω,ω

′)∏n
k=1G

(1)(ωk, ωk)G(1)(ω′
k, ω

′
k)

(3.16a)

=
tr
(∏n

k=1 b(ωk) ρ
∏n

k=1 b
†(ω′

k)
)∏n

k=1〈b†(ωk)b(ωk)〉ρ〈b†(ω′
k)b(ω

′
k)〉ρ

, (3.16b)

thus showing that the coherence properties of the emitted radiation ex-
actly reflect the ones of edge-magnetoplasmon modes. In the same way,
the correlation functions that encode the anisotropy of the edge-magneto-
plasmon modes are exactly the same as the ones encoding the outgoing
mode fluctuations. In particular, an outgoing radiation mode of given
frequency is squeezed if and only if the corresponding edge-magneto-
plasmon mode is.

This shows that the non classical properties of the outgoing radiation
such as squeezing or sub-Poissonian statistics reflect the non classical
properties of the edge-magnetoplasmon modes. This explains why, in
the remaining of the discussion, we shall focus on the properties of the
edge-magnetoplasmon modes.
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3.3.2 Plasmon fluctuations from current noise

The current correlation Si(t, t
′) = 〈i(t′)i(t)〉c represents the quantum

fluctuations of the edge channel quantum electrical current operator
i(t) = −evF :(ψ†ψ)(t): where the fermionic normal ordering is defined
with respect to a reference chemical potential µF = 0. In the stationary
case, Si(t, t′) only depends on τ = t− t′ but not on t̄ = (t+ t′)/2 whereas,
in full generality, it depends on both times. The time-dependent power
spectrum of this current is defined by eq. (1.91) which we recall here for
clarity:

Wi(t̄, ω) =

∫ +∞

−∞
Si

(
t̄+

τ

2
, t̄− τ

2

)
eiωτ dτ. (3.17)

It gives the full power spectrum by averaging over t̄. With our con-
vention, the positive-frequency part contains the emission part of the
spectrum which reflects the ability of the electronic fluid to absorb en-
ergy at frequency ω/2π whereas the negative-frequency part contains
the absorption spectrum.

The frequency representation of the current noise is defined by

S̃i(ω,Ω) =

∫
R2

ei(ωτ+Ωt̄)Si

(
t̄+

τ

2
, t̄− τ

2

)
dtdt′, (3.18)

which is the Fourier transform with respect to t̄ of Wi(t̄, ω). The diagonal
(Ω = 0) contains the time-averaged power spectrum whereas the off-
diagonal (Ω 6= 0) part contains all the information on the non-stationarity
properties of the current noise. Let us now discuss how S̃i(ω,Ω) relates
to the fluctuations of the edge-magnetoplasmon operators. This follows
from the relation i(ω > 0) = −e

√
ω b(ω) expressing the current operator

in term of edge-magnetoplasmon modes.
For ω < −|Ω|/2 (absorption quadrant), we have:

S̃i (ω,Ω) = e2
√
ω2 − Ω2

4
〈b (ω +Ω/2) b† (ω − Ω/2)〉c,ρ, (3.19)

where 〈AB〉c = 〈AB〉−〈A〉〈B〉 denotes the connected correlation function.
For ω > |Ω|/2 (emission quadrant), we have:

S̃i (ω,Ω) = e2
√
ω2 − Ω2

4
〈b† (−ω +Ω/2) b (−ω − Ω/2)〉c,ρ, (3.20)

which for ω > 0 and Ω = 0 gives the average number of quanta in the
edge-magnetoplasmon mode at frequency ω/2π. In particular, the energy
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stored within dω around ω, dE(ω) = ~ω〈b†(ω) b(ω)〉dω, is given by:

dE(ω) = h

e2

(
|〈i(ω)〉|2 + S̃i(ω,Ω = 0)

) dω
2π
. (3.21)

This expression only involves the power spectrum of the noise as well as
the finite-frequency average current. Remarkably, in many physically rel-
evant situations, the power spectrum of the current noise is related to the
finite-frequency admittance that governs the average current response to
an external voltage drive. These relations are called fluctuation/dissipa-
tion relations. Their most general form has been obtained by Safi and
Joyez [2011]. In particular, eq. (13) in Safi and Joyez [2011] relates the
current correlators in the frequency domain to finite-frequency response
functions in a general way.

One can go one step further by using a perturbative approach to
describe the conductor. Here, the coupling constant in which the per-
turbative expansion is done describes how far we are from a situation in
which we know the system is at equilibrium. When the corresponding
fluctuation/dissipation relations are valid we can infer from a perturba-
tive computation of the average current the finite-frequency properties
of the current noise. In [Roussel et al., 2016], we have clarified the va-
lidity conditions of this approach in the case of a d.c.-biased quantum
conductor such as a tunnel junction or a short conductor. Even in the
presence of interactions or coupling to an external environment, the key
requirement is the validity of the pertubative expansion. These theorems
are expected to break down whenever non-equilibrum electronic trans-
port through the conductor gives rise to fluctuations that are drastically
different from equilibrium ones. An example being the tunnel junction
coupled to its electromagnetic environment in the so-called good con-
ductor regime when the temperature is small (kBTel being smaller than
the intrinsic energy scale associated with the junction). In this case,
low-frequency modes are no longer described by the UV fixed points and
current fluctuations are not anymore given by these fluctuation/dissi-
pation theorems. Last year, a violation of the FDR has been observed
in a strongly-biased tunnel junction when probing the current noise at
high frequencies in a regime where dynamical Coulomb blockade could
be neglected [Février and Gabelli, 2017]. This violation came from the
dependence of the transmission amplitude on the frequency and on the
applied voltage. It is still unclear to us if this can be viewed as com-
ing from a mechanism analogous to the one we have described, that is
anomalous fluctuations of the phase.
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Going back to the current noise, let’s consider the off-diagonal quad-
rant of the (ω,Ω) plane defined by ω2 < Ω2/4. Then, for Ω > 2|ω|, we
have:

S̃i (ω,Ω) = e2
√

Ω2

4
− ω2 〈b(Ω/2− ω) b(Ω/2 + ω)〉c. (3.22)

Equations (3.21) and (3.22) show that the fluctuations properties of
the edge-magnetoplasmon mode operator at frequency f = ω/2π are
contained within the time-averaged noise power spectrum Si(2πf,Ω =
0) and the off-diagonal part Si(ω = 0,Ω = 4πf). Note that being
able to explore the whole dependence of S̃i(ω,Ω) would give access to
all the intermode correlations characterizing the edge-magnetoplasmon
fluctuations.

3.3.3 Accessing W∆Si
through homodyne measurements

In section 1.3.1, we discussed the fluctuations of the quantum electromag-
netic field, introducing the notion of squeezing for a single mode. Since
the edge-magnetoplasmon modes are also harmonic modes, the same
notion can also be considered for these modes. Because, as explained
just above, the edge-magnetoplasmon fluctuations are directly connected
to electrical current fluctuations in the edge channel, it is important to
look for practical criterion of squeezing expressed in terms of current
noise correlator.

Accessing the time-dependent properties of current fluctuations re-
quires homodyning the current at the desired frequency. Let us then
consider the homodyned current at frequency f and phase ϕ defined by

if,ϕ(t) = cos(2πft+ ϕ) i(t). (3.23)

The auto-correlation of this homodyned current is then defined as

S
(i)
f,ϕ(t, t

′) = 〈if,ϕ(t′) if,ϕ(t)〉 − 〈if,ϕ(t′)〉〈if,ϕ(t)〉. (3.24)

Its power spectrum at zero frequency is then related to the Wigner–Ville
transform of the current correlation by:

S
(exp)
f,ϕ =

1

4

(
Wi(t, 2πf) +Wi(t,−2πf)

t
)

(3.25a)

+
1

2
cos(4πft+ 2ϕ)Wi(t, 0)

t
. (3.25b)
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Subtracting the vacuum contribution gives the excess noise ∆S
(exp)
f,ϕ :

∆S
(exp)
f,ϕ =

1

2

(
∆Wi(t, 2πf)

t
+ cos(4πft+ 2ϕ)∆Wi(t, 0)

t
)
. (3.26)

where we have used that the excess finite-frequency noise is an even
function of ω in the present case [Safi and Joyez, 2011]. The squeezing
criterion for the edge-magnetoplasmon mode at ω = 2πf is that for some
ϕ, fluctuations are below the vacuum fluctuations which can be expressed
as:

∆S
(exp)
f,ϕ < 0. (3.27)

Note that for a T -periodic source, the time-dependent spectrum Wi(t, ω)
is also T -periodic and can therefore be expanded as a Fourier series in
time:

∆Wi(t, ω) =
∑
n∈Z

∆W
(n)
i (ω) e−2πinfdt, (3.28)

where fd = 1/T denotes the driving frequency. In order to have a non-
zero anisotropic contribution, we must consider f = n fd/2 (n ∈ N∗) and
the squeezing criterion becomes∣∣∣∆W (n)

i (0)
∣∣∣ > ∆Si(πnfd). (3.29)

The anisotropy defined by fig. 1.5 for the plasmon mode at ω = πnf is
then obtained as

χ =

∣∣∣W (n)
Si

(ω = 0)
∣∣∣[

e2ω
4π +W

(0)
Si

(−ω)
]
ω=πnf

. (3.30)

A numerical study During my PhD, I co-supervised the L3 internship
of E. Chanrion who then precisely studied the full time-dependent current
noise generated by the single-electron source of the LPA in all possible
regimes. Using the Floquet code that evalues the excess single-electron
coherence, he then computed the various quantities that are relevant for
understanding the current noise emitted by the source: the Wigner–Ville
transform of the excess current noise, the squeezing indicator (3.26) and
the edge-magnetoplasmon mode anisotropy.

Figure 3.4 presents the results of these computations for a source
driven by a square voltage drive of amplitude ∆/2 and frequency hf/∆ =
0.01, truncated at three harmonics and at temperature kBTel = 0.02. By
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Figure 3.4: Study of the current noise for the LPA source driven by a
square voltage drive truncated at three harmonics at frequency hf/δ =
0.01, amplitude ∆/2 and temperature kBTel/∆ = 0.02. Left column:
excess electronic Wigner function. Middle column: noise anisotropy for
ω = nπf . Right column: Wigner–Ville transform of the excess current
noise W∆Si(t, ω) in function of t/T and ω/∆, scale in units of e2f . On
this graph, D is varied from D = 0.1 (almost closed dot) to D = 0.9
(almost fully open dot).
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Figure 3.5: Density plots for ∆S
(exp)
f,ϕ as functions of ϕ and ω/∆ for the

LPA sources with the same parameters as in fig. 3.4.

varying the dot transmission D, we span the various regimes of the LPA
source as shown by the excess electronic Wigner distribution depicted in
the left column.

The time-dependent power spectrum of the excess noise is shown on
the right panel. It exhibits the expected features known from previous
works [Parmentier et al., 2012]: at large D, the noise is mainly emitted
close to the Fermi surface and vanishes in the limit D → 1 since we
recover a coherent edge-magnetoplasmon state. Around the optimal
single-electron source operating point, we recover the familiar shape with
noise emission up to slightly above ∆/2 corresponding to the maximum
energy carried by the emitted electron with a dip at low frequency whose
width corresponds to γe (it decreases when D goes down). The noise
power also goes down since the dot being more and more closed, less and
less current is emitted. As expected, the time-dependent spectrum shows
that burst of noise power are emitted synchronously with the emitted
electronic and hole excitations. The relative anisotropy is depicted in the
middle column. We see that it is maximal at the optimal operating point
of the source. The maximum anisotropy is of the order of 30 %. In this
case, as a function of ϕ, the excess noise varies from 0.5 to 0.8 in units
of e2f which is well above the noise measurement sensitivity available in
the laboratory for the typical sources already studied.
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However, as shown on fig. 3.5, ∆S(exp)
f,ϕ ≥ 0 for all ϕ and all allowed

frequencies. Thus, no squeezing can be observed within the current
emitted by the LPA source.

Current noise and electronic coherences in the HBT geometry

In order to clarify further the relation between photonic (or equivalently
plasmonic) coherences and electronic coherences, let us consider an
Hanbury Brown–Twiss interferometer in which excitations emitted by a
source (S) are sent onto an ideal electronic beam splitter. In this case,
the time-dependent spectrum for the excess outgoing current noise in
channel 1out is given by the Fourier transform of the current correlations
obtained in [Grenier et al., 2011a]:

∆W
(on/off)
i1out

(t, ω) = T 2∆WiS (t, ω)

+ e2RT

∫
R
g(ω, ω′)∆W

(e)
S (t, ω)dω′ (3.31a)

g(ω, ω′) = 1− fµ(ω
′ + ω)− fµ(ω

′ − ω), (3.31b)

where fµ denotes the electronic distribution function of the channel 2in
(here µ = 0). The first term comes from the current noise transmitted
across the QPC wheras the second one arises from two-particle interfer-
ences between the excitations generated by the source and the particles
present in the Fermi sea injected in the other incoming channel.

Given this expression, the excess outgoing low-frequency noise ∆S(out)
f,ϕ

at zero temperature can be obtained

∆S
(out)
f,ϕ = T 2∆S

(S)
f,ϕ +

e2RT

4π
fd
(
N̄e + N̄h

)
(ε ≥ hf) (3.32a)

+
e2RT

2π

∫
R

sign(ω′)cos(4πft+ 2ϕ)∆W
(e)
S (t, ω′)

t

dω′. (3.32b)

in which (N̄e + N̄h)(ε ≥ hf) denotes the average number of electronic
and hole excitations emitted per period of energy greater than hf .

The first line does not depend on ϕ and therefore contributes to the
isotropic part of the fluctuations. On the other hand, the second line
depends on ϕ and corresponds to the anisotropic part of the fluctuations.
As can be seen, this expression only depends on first-order coherences
and, more precisely, on the part modulated at frequency 2f . The sign(ω′)
means that electronic and hole excitations contribute in the same way to
this term.
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If the source exhibits no squeezing, then the best is to choose one
for which ∆S

(S)
f,ϕ = 0 since it would only contribute to the isotropic part

of fluctuations. A driven Ohmic contact is the best choice since it has
vanishing excess noise. One has then to consider a source that tends to
have most of its single-particle excitations at energies lower than hf but
nevertheless has a strong modulation of its single-electron coherence at
frequency 2f . A study by Mendes and Mora [2015] shows that Levitons
are indeed quite a good choice for generating squeezing at a tunnel
junction in the type of systems considered by Grimsmo et al. [2015]. We
now have a collaboration in progress with C. Mora and G. Fève on the
quantum optics of noise in quantum Hall edge channels which I hope to
resume after my PhD.

3.3.4 Single-particle states in electron and plasmon quan-
tum optics

To make our exploration of the connection between electron and plasmon
quantum optics more explicit, we shall now consider interesting examples
of single- to few-excitation states either in electronic or plasmonic terms
that can be obtained in a simple way. Such examples should be seen as
a way to connect electron to photon quantum optics.

More precisely, we shall address the following questions:

• What are the single-electron excitations that can be generated by
a classical voltage drive?

• How can we generate a single-plasmon excitation from a single
electron/hole pair?

The answer to the first question will lead us to a very important
class of elementary electronic excitations called Levitons. These are the
Dr. Jekyll and Mr. Hyde excitations within quantum Hall edge channels
in the sense that they are the only ones that are both purely electronic
and generated by a classical voltage generator.

The answer to the second question is the opposite: it will give us a
practical electronic way to generate a photonic or plasmonic state which
is non-classical, being a Fock state of a given photonic or plasmonic mode.

Single-electron excitations and classical currents

Let us start by searching for single-electron excitations that can be
generated by a classical current pulse. As we have seen, a classical
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current is described by a coherent state of plasmons with functional
parameter ΛV . Since we consider a current that adds one electron, we
have:

|Ψ〉 = U †D[ΛV ] |F 〉 = D[ΛV ]U
† |F 〉 . (3.33)

where one should remember that each state |F 〉 and U † |F 〉 is a vacuum
state with respect to the plasmonic mode operators.

But we can also describe the emission of a single electron on top of
the Fermi sea by a superposition of plasmonic coherent state according
to eq. (3.8). The principle is then to identify each contributions of the
two expressions we obtained. To do this, we start by developing the
displaced vacuum on a photon number basis:

D[Λ] |0〉 = exp
(
−1

2

∫ ∞

0
|Λ(ω)|2 dω

)
×

∞∑
n=0

1

n!

∫ ∞

0

n∏
i=1

Λ(ωi)√
ωi

b†(ωi)dω1 · · · dωn |0〉 .
(3.34)

Let us compare zero-, one- and two-plasmon contributions. We introduce
the particle current ie,V (ω) =

√
ωΛV (ω) generated by the classical voltage

drive V . Each order in the number of plasmonic excitations gives a
functional relation between the wavefunction and the current. At zero-
plasmon order:

vF ϕe(ω = 0) =
√
2πa exp

(
1

2

∫ ∞

0

(
1− |ie,V (ω)|2

) dω
ω

)
, (3.35)

and then, at the one-plasmon order:

ϕe(ω) = ϕe(0)ie,V (ω), (3.36)

and finally at the two-plasmon order:

ϕe(ω1 + ω2)ϕe(0) = ϕe(ω1)ϕe(ω2). (3.37)

The only continuous solutions of eq. (3.37) have the form A exp(−ωτe +
iωt0). Wavefunctions being normalized, we thus have:

ϕe(ω) =
√
4πτevF H(ω) exp(−ωτe) exp(iωt0), (3.38)

which is the Leviton of width τe emitted around time t0. Having an
expression for ie,V , we can come back to eq. (3.35). Divergences within
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the exponential will be regularized using the usual UV cutoff a. First,
we have to compute:

ϕe(ω = 0) =
√
2πa exp

(
1

2

∫ ∞

0

(
1− |ie,V (ω)|2

) dω
ω

)
, (3.39)

which involves an integral of the form:

exp
(∫ ∞

0
(e−ωτ1 − e−ωτ2)

dω
ω

)
=
τ2
τ1
, (3.40)

with τ2 = 2τe and τ1 = 0. Since τ1 = 0 would diverge, we regularize it
using τ1 = a/vF = 0+ thus obtaining:

√
2πa exp

(
1

2

∫ ∞

0

(
1− |ie,V (ω)|2

) dω
ω

)
=

√
4πvF τe, (3.41)

showing that eqs. (3.35) to (3.37) are consistent. This shows that the
only single-electron excitation that can be generated by a classical current
is the Leviton of unit charge. In the same way, the only single-hole
excitation that can be generated by a single voltage pulse is the anti-
Leviton of charge e.

Single-plasmon state from electron/hole pair annihilation

Let us now determine if it is possible to generate a single photon from a
single electron/hole pair. On one hand, if we create a single photon in
wavefunction ϕb in the electronic fluid, the state of the fluid becomes:

b†[ϕb] |0〉 =
∫ ∞

0
ϕb(ω)b

†(ω)
dω√
2π

|0〉

=

∫
ϕb(ω)√
2πω

c†(ω + ω′)c(ω′)dωdω′ |0〉 .
(3.42)

where we defined the bosonic creation operator using the normalization∫
|ϕb(ω)|2dω/2π = 1. On the other hand, an electron/hole pair is

described by the wavefunction of the electron ϕe and the wavefunction
of the hole ϕh. The state of the fluid is:

c†[ϕe]c[ϕh] |0〉 =
1

2π
vF

∫
ϕe(ω)ϕ

∗
h(ω

′)c†(ω)c(ω′)dωdω′ |0〉 . (3.43)

Identification between these two expressions impose the following func-
tional relation, provided that ω′ < 0, ω > 0 and ω + ω′ > 0,

1√
2πvF

ϕe(ω + ω′)ϕ∗
h(ω

′) =
ϕb(ω)√

ω
. (3.44)
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This conditition is fulfilled by a synchronized Leviton/anti-Leviton pair
emitted around time t0 and of typical length τ0:

ϕe(ω) =
√
4πτevF H(ω) e−ωτeeiωt0 (3.45a)

ϕh(ω) =
√
4πτevF H(−ω) e−|ω|τeei|ω|t0 . (3.45b)

At the same time, the photon is emitted in a broadband wavefunction cen-
tered around the same time t0 and possessing the same typical timescale
τ0 as the Leviton/anti-Leviton pair. Its wavefunction ϕb is Lorentzian
in time. Note that this single-plasmon state carries a vanishing average
electrical current at all times! Its energy spectrum is

S(ω) = |ϕb(ω)|2 = 8πτ2e ω e−2τeω. (3.46)

Is it possible to create such a pair in an actual device? Actually, it
is, by using a quantum point contact. We can imagine someone sends
synchronously a Leviton and an anti-Leviton on a QPC, like in fig. 3.6. In
this case, we can have four processes, two being trivial (direct propagation
or exchange) and two leading to the creation of a single photon in one
branch of the interferometer. An alternative method has been suggested
in [Dasenbrook and Flindt, 2015], which involves driving the gate voltage
of a QPC in a suitable way.

3.4 Interactions and plasmon scattering
In this section, I will discuss single-electron decoherence. The problem is
to compute the electronic coherence after an injected pure single-electron
excitation has propagated within an interaction region of finite length.

I will describe my work on this subject, taking into account that
the study of this very important problem has started long time ago,
first when my advisor considered the many-body decoherence in a non-
chiral Luttinger liquid [Degiovanni and Peysson, 2000] and when, with
C. Grenier and G. Fève, they invented the method that forms the basis
of all our subsequent work [Grenier, 2011] which they have applied to
the problem of the relaxation of an energy-resolved electronic excitation
of top of the Fermi sea c†(ωe) |F 〉 [Degiovanni et al., 2009].

My contribution to this line of reaseach has been to solve, in collabo-
ration with C. Cabart and D. Ferraro, the problem of decoherence of an
arbitrary single-electron excitation [Ferraro et al., 2014a]. Let me stress
once again that this step was essential for understanding the HOM exper-
iments since, as explained in section 1.6.2, the HOM experimental signal
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Figure 3.6: Creating a photon from a single electron/hole pair. On the
left, we see a scheme of the device that could generate a single photon.
We have two sources, one on the left that emits a single Leviton, the
other one on the right that emits a single anti-Leviton. Both particles
arrive synchronously at a balanced QPC. On the right, the four types of
processes that can happen. Two of them (first column) are trivial ones,
that are direct propagation and exchange. Two of them generate a single
photon in one of the arm of the interferometer.

is the overlap of two time-shifted single-electron coherence. It turns out
that the computation for an arbitrary single-electron excitation which
have a coherent spreading in time and in energy is one order of magni-
tude more difficult than for the case of an energy-resolved single-electron
excitation.

In the present section, I will present a review of this topic based on
this reference and on a long paper in final stage of completion that will
discuss the applications of the method to decoherence at filling fraction
ν = 1 and to the decoherence control by sample design. I will also review
the comparison between our theoretical predictions, the predictions by
Th. Martin’s group [Wahl et al., 2014] and the experiment performed by
G. Fève and his group in Paris [Marguerite et al., 2016b].
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3.4.1 General method

During their propagation, electronic excitations will experience screened
Coulomb interactions within the conductor and with charges located
in nearby conductors. However in a regime of linear response for all
conductors involved, interaction effects can be described within the
edge-magnetoplasmon scattering formalism which describes how the
bosonic edge-magnetoplasmon modes are altered within the interaction
region. Therefore, the bosonization framework provides the key for
describing electronic coherence propagation along chiral edge channels.

More precisely, we consider a length l region of a quantum Hall edge
channel in which electrons experience intra-channel Coulomb interactions
as well as Coulomb interactions with other edge channels (see fig. 3.7
(a)) or an external gate connected to an impedance (see fig. 3.7 (b)). To
describe the dynamics, we will introduce the bosonic field φ(x, t), that
can be written from the local charge density n(x, t)

φ(x, t) =
1√
π

∫ ∞

x
n(y, t)dy. (3.47)

Since the local density n and the particle current ie are linearly related,
this description is completely equivalent to the one we have considered in
section 3.2. The bosonic field follows the following equation of motion:

(∂t + vF∂x)φ(x, t) =
e
√
π

h
U(x, t), (3.48)

where U(x, t) denotes the potential along the edge channel. Assuming we
are in a linear screening regime within the edge channel and also for the
external elements capacitively coupled to the edge channel, the potential
U(x, t) is linear in terms of the bosonic fields associated with the other
edge channels as well as in terms of bosonic dynamical variables describing
other circuit elements. In the case of a gate coupled to an external
circuit, these are the bosonic modes associated with the transmission
line representation of the circuit impedance (see section 3.3.1 as well as
[Degiovanni et al., 2009]).

In the same way, the edge-magnetoplasmon modes of the current
channel appear within source terms for the linear equations that describe
bosonic modes for the other edge channels and circuit elements.

The interaction region being of finite length, solving the full set of
equations of motion leads to an expression for the outgoing fields in terms
of the incoming ones. Note that because the problem is time-translation
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Figure 3.7: The edge-magnetoplasmon scattering approach describes (a)
two copropagating edge channels capacitively coupled over a distance
l, (b) a chiral edge channel capacitively coupled to a linear external
circuit described by a frequency-dependent impedance Z(ω). Solving
for the equation of motions leads to a frequency-dependent scattering
matrix S(ω) between the channel’s edge-magnetoplasmon modes and the
bosonic modes of the other system (c).

invariant, the solution can be expressed in terms of an elastic scattering
matrix S(ω) relating the incoming and outgoing bosonic modes (see
fig. 3.7 (c)). In the present situation where all the incoming and outgoing
channels correspond to non-interacting edge channels with the same Fermi
velocity, this matrix is unitary which expresses energy conservation of
edge-magnetoplasmon scattering.

The edge-magnetoplasmon scattering matrix is directly related to
the dimensionless finite-frequency admittance gα,β(ω) = RKGα,β(ω)
(RK = h/e2 being the quantum of resistance) defined as the ratio of
the derivative of total current coming into the sample through the edge
channel α with respect to the voltage applied to the reservoir feeding the
edge channel β. Such a relation has been derived in the case of quantum
wires [Safi and Schulz, 1995a,b; Safi, 1999] which are non-chiral Luttinger
liquids. In the present case of chiral quantum Hall edge channel at integer
filling fractions, this relation takes the following form [Degiovanni et al.,
2010]:

gαβ(ω) = δα,β − Sαβ(ω). (3.49)

Relating edge-magnetoplasmon scattering to response functions also puts
some constraints on scattering amplitudes.

First of all, let’s consider the dimensionless finite-frequency admit-
tance g(ω) = 1− S11(ω) of the effective dipole formed by the interaction
region of the edge channel 1. Its analytic continuation to negative fre-
quencies obeys the reality condition: g(ω)∗ = g(−ω). Consequentely,
t(ω) = S11(ω) can be analytically extended to negative frequencies by
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t(−ω) = t(ω)∗.
Next, the finite-frequency admittance g(ω) is the one of a passive

circuit. As such, it obeys the general property first proposed by Cauer
[1926] and then proven by Brune [1931a,b] of being positive real. With
our convention, this means that for z = σ + iω, z 7→ g(z) is analytic in
the half plane <(z) < 0 and

<(Z(z)) > 0 when σ < 0, (3.50a)
=(Z(z)) = 0 when z ∈ R−. (3.50b)

These conditions put some constraints on the low-frequency expansion of
t(ω) and consequentely on the effective interaction models that can be
used. This raises the question of a discrete element circuit synthesis for
modeling interaction regions in electron quantum optics, a mathematically
entertaining topic which I will leave for future investigation.

Finally, since the edge-magnetoplasmon scattering matrix depends
on the precise form of the electric potential within the wire U(x, t),
analytical models are often approximative descriptions of the real physics
of the sample. Examples of effective model computations can be found in
Ch. Grenier’s thesis [Grenier, 2011]. Equation (3.49) also suggests that
edge-magnetoplasmon scattering amplitudes can be measured using finite-
frequency admittance measurements. This has indeed been done in the
case of the ν = 2 edge channel system [Bocquillon et al., 2013b] and this
has led to a phenomenological model for edge-magnetoplasmon scattering
that combines both the effect of long-range Coulomb interactions and of
plasmon dissipation.

As will be discussed in section 3.5, the edge-magnetoplasmon scatter-
ing amplitudes are the key ingredients for computing electronic decoher-
ence. Before turning to this problem, let us discuss several phenomeno-
logical edge channel models starting with the case of an ideal ν = 1 edge
channel with finite-range intra-channel interactions. We shall then con-
sider the case of two interacting edge channels (ν = 2) and discuss the
case of specific geometries in which one of the edge channels is closed.

3.4.2 The ν = 1 case

Let us first consider a single edge channel with Coulomb intra-channel
interactions. In this case, the edge-magnetoplasmon scattering matrix
reduces to a frequency-dependent transmission coefficient t(ω) which, in
the absence of dissipation satisfies |t(ω)| = 1.
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Short-range effective screened Coulomb interactions correspond to a
renormalization of the edge-magnetoplasmon velocity and therefore to
a linear dependence of the phase of t(ω) in ω, t(ω) = eiωτ(l) where τ(l)
is the renormalized time of flight. By contrast, finite-range interactions
lead to a non-linear frequency dependence of the phase of t(ω). We shall
write t(ω) = eiωτ(l,ω) where the time of flight now depends on ω through
a frequency dependent velocity τ(l, ω) = l/v(ω) for the edge magneto-
plasmons. Since t(ω)∗ = t(−ω), v(ω) can be extended analytically to
negative frequencies by v(−ω) = −v(ω).

A simple model of a ν = 1 edge channel with an interaction region of
length l and capacitance C and bare Fermi velocity vF is presented in
appendix D. This model depends on a dimensionless coupling constant
α = (e2/C)/(~vF /l) representing the ratio of the Coulomb energy for
the interaction region to the associated kinetic energy. As expected, it
exhibits a non-linear dependence of the phase t(ω). The edge-magneto-
plasmon velocity decreases from v0 to an asymptotic value v∞ = vF
showing some mild oscillations as it approaches its asymptotic value v∞
(see fig. 3.8). These oscillations arise from the sharp position dependence
of the interaction potential at the boundary of the interaction region.
Note that realistic estimates detailed in appendix D for the coupling
constant α in AsGa/AsGaAl are of the order of α = 0.8. The value of
0.8 leads to a ratio v0/vF ' 4.2.

In the end, we expect a realistic model of interactions to lead to
a smoother behavior of v(ω) which nevertheless captures the essential
physics of Coulomb interactions [Neuenhahn and Marquardt, 2009]. Key
features are the two different asymptotic velocities v0 and v∞ in the
limits ω → 0 and ω → +∞. The infrared velocity v0 is the velocity
of low-energy edge-magnetoplasmon modes and should therefore be
called the plasmon velocity. Due to Coulomb interactions, it is expected
to be higher than the velocity of high-energy excitations who do not
experience interactions for a long time. It is thus reasonable to consider
a phenomenological model for t(ω) = eiωl/v(ω) in which v(ω) interpolates
between v0 and v∞ with v0 > v∞.

3.4.3 The ν = 2 case

The ν = 2 edge channel system is the simplest and experimentally most
relevant case involving more than one channel. In this case, two coprop-
agating edge channels separated by approximately 100 nm experience
strong intra- and inter-channel screened Coulomb interactions. Several
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Figure 3.8: Velocity v(ω)/v0 corresponding to exp(iωl/v(ω)) given by
eq. (D.5) in terms of ωl/vF for α = 1/10, α = 3/4 and α = 1.

models have been developed to describe this situation and are briefly
reviewed here.

Co-propagating channels with short-range interaction In the
presence of metallic side gates, Coulomb interactions are screened and
the charge density in one channel is capacitively coupled to the charge
density at the same point in the other channel [Levkivskyi and Sukho-
rukov, 2008]. More precisely, charge density in channel i at position x
and energy ω, ρi(x, ω), is coupled to the local electrostatic potential U
through distributed capacitances: ρi(x, ω) = CijUj(x, ω). This situation,
schematically depicted on fig. 3.9, is known to give a good description
of interactions in experimental systems at small energies, a fact that
has been directly probed in the frequency [Bocquillon et al., 2013b] and
time [Hashisaka et al., 2017] domains and indirectly confirmed in [In-
oue et al., 2014]. Within the interaction region, edge-magnetoplasmon
eigenmodes delocalized over the two channels propagate at different ve-
locities. This leads to the following edge-magnetoplasmon scattering
matrix [Degiovanni et al., 2010]:

S(ω) =

(
p+eiωτ+ + p−eiωτ− q

(
eiωτ− − eiωτ+

)
q
(
eiωτ− − eiωτ+

)
p+eiωτ− + p−eiωτ+

)
, (3.51)
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Figure 3.9: Schematic view of the main types of interaction discussed
at ν = 2. Short-range interaction corresponds to a capacitive coupling
between charge densities at the same position in the two channels, and
no coupling between different positions. Long-range interaction describes
a situation where the system behaves as one big capacitor. We are also
interested in situations where the inner channel is closed on itself and
interacts with the outer channel either along its whole length (a), or
only on a small portion of the closed loop (b). In either of these cases,
interactions can be short-range or long-range.
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where

p± =
1± cos(θ)

2
, q =

sin(θ)
2

(3.52a)

τ+ =
l

v+
, τ− =

l

v−
. (3.52b)

In these equations, θ is a mixing angle which corresponds to the coupling
strength, v+ to the velocity of the slowest mode and v− to the one of the
fastest mode. In the strong coupling regime, θ = π

2 , the corresponding
modes are a fast charge mode symmetric over the two channels, and a
slow neutral mode which is antisymmetric.

Co-propagating channels with long-range interaction The sec-
ond model for interacting co-propagating channel assumes that local
potentials U are uniform on the whole length of the interaction region.
The system then behaves just as one big capacitor (see fig. 3.9) and can
be discussed in the spirit of the discrete element circuit models introduced
by Prêtre et al. [1996] for quantum conductors and then generalized
for quantum Hall edge channels [Christen and Büttiker, 1996]. This
approach leads to the following edge-magnetoplasmon scattering matrix
[Grenier et al., 2013]:

S(ω) =

(
p+T+(ω) + p−T−(ω) q (T−(ω)− T+(ω))
q (T−(ω)− T+(ω)) p+T−(ω) + p−T+(ω)

)
, (3.53)

where p± and q are given by eq. (3.52) and other parameters are given
in terms of the dimensionless parameter x = ωl/vF by

T±(ω) =
eix − 1 + iα±xeix

eix − 1 + iα±x
, (3.54)

where α± are linked to the eigenvalues of the capacitance matrix C± by
α± = RKC±vF /l.

3.4.4 The ν = 2 case with a loop

Figure 3.9 (a) also depicts a different situation that can arise with two
copropagating edge channels, where the inner one is closed on itself over
the length l where interaction takes place [Altimiras et al., 2010b]. This
imposes a periodicity condition on the bosonic field for channel 2:

φ2(l, ω) = φ2(0, ω). (3.55)
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The transmission coefficient for channel 1 is then given by

t(ω) =
S11(ω)− det(S(ω))

1− S22(ω)
(3.56)

for any interaction type described in the open channel case by the
scattering matrix S. As expected, this transmission coefficient has a
modulus of 1 when S is unitary, which emphasizes the fact that no energy
loss is present here. The presence of the closed channel leads to strong
non-linearity in the phase of t(ω) and thus to electronic decoherence. For
the specific case of short-range interaction between channels, this yields

t(ω) = −eiω(τ++τ−)

(
1− p+e−iωτ+ − p−e−iωτ−

1− p+eiωτ+ − p−eiωτ−

)
. (3.57)

The other type of interaction with a channel closed on itself, depicted
on fig. 3.9 (b) appears when the length over which interaction takes
place is not the full length of the closed loop, but rather only a part of
that loop. Such a geometry has been used for mitigating decoherence in
electronic Mach–Zehnder interferometers [Huynh et al., 2012]. In that
second case, the periodicity condition on the field for the inner channel
is slightly changed

φ2(0, ω) = φ2(l, ω)eiωτL , (3.58)

where τL = L
v+

is the time it takes for an excitation to cover the non-
interacting length L of the loop. For the short-range interaction model,
this leads to

t(ω) = −eiω(τ++τ−−τL)

(
eiωτL − p+e−iωτ+ − p−e−iωτ−

e−iωτL − p+eiωτ+ − p−eiωτ−

)
. (3.59)

As expected, case (a) is recovered when τL = 0.

3.5 Electronic decoherence

Let us now explain how to obtain the outgoing electronic coherences when
a single-electron excitation is injected into the interaction region. This
section presents the main steps and the essentiel points of the general
methods developed for comparing the electronic decoherence of Landau
and Levitov quasi-particles [Ferraro et al., 2014a].
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3.5.1 General results

In the bosonization framework, the interaction region is a frequency-
dependent beam splitter for the edge-magnetoplasmon modes. An in-
coming coherent state for these modes is scattered exactly as a classical
electromagnetic wave on an optical beam splitter [Grenier et al., 2013].
More precisely, an incoming coherent edge magnetoplasmon of the form
|Λ1〉 ⊗ |Λ2〉 is transformed into an outgoing state |Λ′

1〉 ⊗ |Λ′
2〉 where for

all ω > 0, Λ′
α(ω) =

∑
β Sαβ(ω)Λβ(ω). Because single-electron states are

described as quantum superposition of coherent edge-magnetoplasmon
states, an exact description of the outgoing state after the interaction
region can be obtained. A single-electron state injected in edge channel 1
corresponds to

|ϕe, F 〉1 ⊗ |F 〉2 =
∫ +∞

−∞
ϕe(t)

U †
1√
2πa

⊗
ω>0

(|Λω(t)〉1 ⊗ |0ω〉2) dt, (3.60)

and comes out of the interaction region as:∫
ϕe(t)

U †
1√
2πa

⊗
ω>0

(|t(ω)Λω(t)〉1 ⊗ |r(ω)Λω(t)〉2) dt. (3.61)

In this equation, we adopt the convention used in the remaining of this
text that S11(ω) = t(ω) and S21(ω) = r(ω), other coefficients of S being
irrelevant as no injection is made in channel 2. Tracing on the second
edge channel degrees of freedom leads to the reduced outgoing many-
body density operator for the injection edge channel [Degiovanni et al.,
2009]:

ρ1 =

∫
ϕe(t)ϕ

∗
e(t

′)Dext(t− t′)ψ†(t)|g(t)〉〈g(t′)|ψ(t′)dtdt′, (3.62)

where Dext(t− t′) is an extrinsic decoherence coefficient corresponding
to the overlap of imprints left in the environment by localized electrons
injected at times t and t′. It is given by [Degiovanni et al., 2009]:

Dext(τ) = exp
(∫ +∞

0
|r(ω)|2(eiωτ − 1)

dω
ω

)
. (3.63)

The coherent edge-magnetoplasmon state |g(t)〉 in eq. (3.62) corresponds
to the cloud of electron/hole pairs generated by Coulomb interactions
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when a localized electron ψ†(t)|F 〉 goes through the interaction region:

|g(t)〉 =
⊗
ω>0

|(1− t(ω))Λω(t)〉. (3.64)

In the same way, in the ν = 2 case, the reduced density operator for the
inner edge channel can be obtained by tracing out over the outer edge
channel. This leads to

ρ2 =

∫
ϕe(t)ϕe(t

′)Dinj(t− t′) |E2(t)〉〈E2(t′)|dtdt′. (3.65)

where
|E2(t)〉 =

⊗
ω>0

|r(ω)Λω(t)〉 (3.66)

and the decoherence coefficient

Dinj(τ) = exp
(∫ +∞

0
|t(ω)|2(eiωτ − 1)

dω
ω

)
(3.67)

is equal to the overlap of the outgoing states |E1(t)〉 of the injection edge
channel corresponding to two different injection times:

|E1(t)〉 =
⊗
ω>0

|t(ω)Λω(t)〉. (3.68)

This many-body description gives access to all electronic coherence
functions after the interaction region.

3.5.2 Computing single-electron coherences

Going back to the general case, we turn to first-order coherences in
the outer and inner channels after interaction, denoted respectively by
G(e)

out,1(t|t′) and G(e)
out,2(t|t′).

Outer-channel coherence

When computing G(e)
out,1(t, t

′), the final results appear as a sum of two
terms. The first one corresponding to the modification of the Fermi
sea which, under the right condition can be seen as the contribution
of electron/hole pairs generated by Coulomb interaction vacuum state
(namely the Fermi sea). This one is called the modified vacuum. The
second contribution corresponds, also under the proper conditions, to
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the incoming excitation elastically scattered or after interaction induced
relaxation. This one is called the wavepacket contribution. These two
contributions [Ferraro et al., 2014b] can be written as

G(e)
MV,1(t, t

′) =

∫
ϕe(t+)ϕ

∗
e(t−)D(t, t′, t+, t−)

〈ψ†(t′)ψ(t)〉F 〈ψ(t−)ψ†(t+)〉F dt+dt−,
(3.69a)

G(e)
WP,1(t, t

′) =

∫
ϕe(t+)ϕ

∗
e(t−)D(t, t′, t+, t−)

〈ψ(t)ψ†(t+)〉F 〈ψ(t−)ψ†(t′)〉F dt+dt−,
(3.69b)

where

D(t, t′, t+, t−) = γ+(t+ − t′)γ−(t+ − t)γ∗+(t− − t)γ∗−(t− − t′), (3.70)

is the effective single-particle decoherence coefficient which takes into
account both the action of environmental degrees of freedom and of
electron/hole pairs cloud created in the injection channel. It is determined
by the two functions

γ±(t) = exp
(
±
∫ ∞

0
(1− t(ω))(eiωt − 1)

dω
ω

)
. (3.71)

Explicit expressions for the two contributions (3.69a) and (3.69b) are
given in [Ferraro et al., 2014a, Supplementary Material] and form the
starting point of the numerical evaluation of the outgoing electronic
coherence in the frequency domain (see section 3.5.2).

Inner-channel coherence

Using the reduced density matrix ρ2 for the inner channel, any coherence
function we are interested in can be computed. The main result is
strikingly simple: G(e)

out,2(t, t
′) is of the same exact form as G(e)

MV,1(t, t
′) if

we replace the function t(ω) in the decoherence coefficient with 1 + r(ω).
The fact that there is no wavepacket term emphasizes that no electron
has been injected into the inner channel, only electron/hole pairs are
created.

Numerical method

As shown in [Ferraro et al., 2014a, Supplementary Material], the numerical
evaluation consists in evaluating integral of factors. The implementation
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is quite straightforward, even though the main difficulty comes from the
number of nested integrals (four for each point of the electronic coherence).
A naive implementation when there are n points in the input coherence
in each direction ω and δω, would require an O(n6) computation time.
This is a lot, since doubling the number of points would require 64 more
computation time. However, we lowered the overall complexity of the
problem by using its internal structure.

First, it is possible to restate the problem analytically so that one of
the integral takes a form ∫ ∞

ω
I(k;X)dk, (3.72)

lowering the complexity to O(n5).
Second, the mathematical structure of the problem is the following.

If we consider the coherence in energy, it is possible to show that the
output coherence is obtained by a convolution of the input coherence
with the propagator along each line parallel to the diagonal (see fig. 3.10).
This implies that ω and δω are completely uncoupled in this problem.
Furthermore, δω will encode temporal precision, which can usually be
fixed once and for all, while ω will encode frequency precision as well as
the precision of all our integrations. By using two different discretization,
one along ω with n points, the other one along δω with m points, we can
obtain a complexity O(m× n4).

δω
2

ω ω+ω−

ω′

−ω′

(e)

(h)

(e/h)(e/h)

Figure 3.10: Propagation of the incoming wavepacket by the interactions.
Each point of the post-interaction coherence comes from the propagation
of the point of the incoming coherence along the same δω line.

With these refinements and using OpenMP parallel framework, we
are able to compute a post-interaction coherence in about five minutes
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on a 64 cores computer.
We can use two indicators to check the errors. The obvious one is the

trace which, as the total number of electrons, should not change. It turns
out that it is a very sensitive indicator. If we have a doubt, we can also
compare the outgoing average current from the coherence and from the
convolution of transmission coefficient and incoming current (however,
due to discontinuities in Landau quasi-particle wavepackets, there are
unavoidable disparities between these two, due to Gibbs phenomenon).

3.5.3 Many-body decoherence

The decoherence and relaxation of a single electron propagating within
a given edge channel is strongly influenced by the external degrees of
freedom to which the edge channel can be coupled. Because such a
dynamical environment can be excited by the incoming single-electron
excitation, it leads to decoherence of the electronic fluid as a whole.
The energy flow into the second edge channel has been shown to be
the main source of energy relaxation of the inner channel in the ν = 2
system [Le Sueur et al., 2010] although a quantitative description by
bosonization [Degiovanni et al., 2010] showed that approximately 23 %
of the energy in the inner edge channel does not flow into the outer one2.
The experimental study also demontrated that, in the case of an out-
of-equilibrium electronic distribution, the electronic lifetime was scaling
as the inverse of the typical electronic energy, a result showing that the
usual Fermi liquid picture is broken in this system. An important issue
was then to understand the influence of the external environment on
electronic decoherence in quantum Hall edge channels.

Inelastic scattering probability

To get a first hint at the underlying physics, let us consider the inelastic
scattering probability across the interaction region: σin(ωe) = 1−|Z(ωe)|2
where Z(ωe) denotes the elastic scattering amplitude for an electronic
excitation introduced at the energy ~ωe ≥ 0. This quantity is directly
infered from the regular part of the Fourier transform of γ− (see [Ferraro
et al., 2014b]). Expanding the low-frequency dimensionless admittance

2. Together with high-frequency impedance measurements [Bocquillon et al., 2013b],
this result shows that there is still a lot to understand in the physics of quantum Hall
edge channels. New insights from experiments would certainly be useful.
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g(ω) as

g(ω) = −iRKCµω +
Rq

RK
(RKCµω)

2 +O(RKCµω
3), (3.73)

which defines the electrochemical capacitance Cµ and the relaxation
resistance [Büttiker et al., 1993; Prêtre et al., 1996] Rq associated with
the interaction region, the inelastic scattering probability behaves as
[Grenier et al., 2011b]:

σin(ωe) =

(
Rq

RK
− 1

2

)
(ωeRKCµ)

2 (3.74)

for ωeRKCµ � 1. In the presence of extrinsic degrees of freedom in
which energy can be dissipated, Rq > RK/2 and therefore the inelastic
scattering probability grows quadratically with energy. On the contrary,
when the edge channel is not coupled to external dynamical degrees of
freedom, as in the ν = 1 case (see section 3.4.2) as well as in the case of an
edge channel coupled to a closed second edge channels (see section 3.4.4),
this extrinsic decoherence is not present and single-electron decoherence
only arises from the creation of electron/hole pairs within the electronic
fluid. We then expect this process to be less efficient than excitation
emission into the external environement due to phase-space limitations
arising from the Pauli principle.

At higher energies, two different scenarios are possible and can be
described by looking at the relaxation of a monochromatic electronic
wave [Degiovanni et al., 2009]. This depends on the coupling between the
system and its environment which is encoded in the functional dependence
of t(ω):

• Provided the coupling is not too important and its bandwidth
finite, the vicinity of the Fermi level can be seen as an effective
environment for the incident electron. In this regime, which is
similar to the usual approach to dynamical Coulomb blockade, the
wavepacket contribution is of the form

∆G(e)
MV(t, t

′) = Dtot(t− t′)ϕe(t)ϕe(t
′), (3.75)

where Dtot(t− t′) is an effective decoherence coefficient of the form

Dtot(t− t′) = Dext(t− t′)×Dint(t− t′), (3.76)
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in which we recognize the extrinsic decoherence coefficient given
by (3.63) and an intrinsic one reflecting the imprits left under the
form of an electron/hole pair cloud close to the Fermi sea: it is
obtained by substituting |r(ω)|2 by |1− t(ω)|2 in the expression of
Dext.

In this regime, the relaxation tail of an electron injected at a given
energy ~ωe is well separated from the wave of electron/hole pairs
it generates close to the Fermi sea (see fig. 2 of [Degiovanni et al.,
2009]).

• When the coupling is large and the bandwith infinite, the inelastic
scattering amplitude saturates towards unity at large energies. The
quasi-particle does not exist anymore at large energies. This is
what happens at ν = 2 within the short-range interaction model.
In this example, the quasi-particle is swallowed by the wave of
electron/hole pairs it generates in the Fermi sea as shown on fig. 3
of [Degiovanni et al., 2009].

Landau excitations vs Levitons

A more complete understanding of the role of many-body decoherence
came by considering, within the same interaction model, the fate of two
different single-electron excitations. In [Ferraro et al., 2014b], we have
compared the fate of the Levitov and of the Landau quasi-particles in
the ν = 2 edge channel system with short-range interactions.

Figure 3.11 presents numerical evaluations of the outgoing Wigner
function for an incoming Landau quasi-particle of energy ~ωe and dura-
tion τe = γ−1

e for various propagation distances or, equivalently, times
of flight. These results are obtained at zero temperature. They show
that the decoherence scenario for the Landau quasi-particle involves
two timescales. For an energy-resolved excitation (γe � ωe), the single-
electron coherence relaxes close to the Fermi level after a time of flight
proportional to ω−1

e . Then, after a time of flight proportional to the
wavepacket duration γ−1

e � ω−1
e , ∆W (e)

out(t, ω) splits into two parts pro-
gressing at the velocities of the two edge-magnetoplasmon eigenmodes,
thus giving birth to collective excitations close to the Fermi sea. The
first phenomenon is associated with energy relaxation discussed in the
previous paragraph and probed by F. Pierre’s group whereas the sec-
ond one corresponds to the expected fractionalization arising from the
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Figure 3.11: (Extracted from [Ferraro et al., 2014b]) Excess Wigner
function ∆W

(e)
out(t, ω) at various propagation times for a Landau quasi-

particle of lifetime τe emitted at energy ~ωe = 10~τ−1
e . The horizontal

dashed line at ω = 0 is the Fermi level. Plots correspond to increasing
propagating lengths expressed in terms of times of flight: τs for the
slow mode and τc = τs/20 corresponds to the fast mode. The time shift
τ̄ = (τc + τs)/2 compensates for the global drift of the excitations. Panel
(a) shows the initial excess Wigner function.

charged/neutral mode separation predicted by the short-range interac-
tion model [Grenier et al., 2013].

This decoherence scenario must be compared to the Levitov quasi-
particle one shown on fig. 3.12: the Leviton fractionalizes into two half-
Levitons which are Lorentzian current pulses carrying a charge −e/2.
The only timescale appearing is the time needed to fractionalize a Leviton.

The difference between these scenarios comes from the nature of the
incoming many-body states: the Leviton is an edge-magnetoplasmon
coherent state. Since the interaction region acts as a frequency-dependent
beam splitter for the edge magnetoplasmons, the Leviton many-body
state does not entangle with its environment: it is a pointer state [Zurek
et al., 1993] which does not experience decoherence. In section 3.3.4,
we have showed that these are the only single-electron excitations that
are pointer states with respect to linear couplings to the edge channel’s
electromagnetic environment. The Wigner function changes shown on
fig. 3.12 come from electron/hole pair generation in this pure many-body
state.

On the other hand, as explained in section 3.2.3, the many-body state
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Figure 3.12: (Extracted from [Ferraro et al., 2014b]) Excess Wigner
function ∆W

(e)
out(t, ω) of a single-electron Leviton of width τ0 for various

propagation times: τs (resp. τc) denotes the time of flight of the spin
(resp. charged) mode within the interaction region and τc = τs/20 and
τ̄ = (τs + τc)/2.

corresponding to the Landau quasi-particle is a superposition of such
pointer states. Entanglement with the second edge channel leads to its
decoherence. Depending on the copropagation distance, the outgoing
many-body state is a partly decohered mixture of coherent states, each
of them corresponding to a localized electronic excitation dressed by a
cloud of electron/hole pairs. This extrinsic decoherence is a many-body
phenomenon which leads to the rapid decay of the Wigner function at
the initial injection energy ~ωe.

Therefore, the rapid electronic relaxation shown on fig. 3.11 appears
as the electronic counterpart of the decay of interference fringes expected
for the Wigner function of the superposition of two coherent states of
an electromagnetic mode observed in cavity QED experiments [Deléglise
et al., 2008]. Here, it arises from the decoherence of a mesoscopic
superposition of edge-magnetoplasmon coherent states. This process
takes place over a shorter time than the evolution of each of these quasi-
classical states which corresponds to spin-charge separation.

Once extrinsic decoherence has taken place, the outgoing many-
body state is an incoherent mixture of fractionalized localized electronic
excitations. We confirm this scenario by computing both the current
pulse and the electron distribution function corresponding to the Wigner
functions of fig. 3.11: the decay of the quasi-particle peak takes place at
short times (fig. 3.13 (c)) while the current pulses are almost unseparated
(fig. 3.13 (a)) and no hole excitations created, thus confirming that it
is a purely extrinsic decoherence effect. As the two half-charge current
pulses split (fig. 3.13 (b)), hole excitations are created (fig. 3.13 (d)).
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Figure 3.13: (Extracted from [Ferraro et al., 2014b]) The average current
〈i(t)〉 in units of −e/τe (top row) and the excess electron distribution
function δfe(ω) (bottom row) corresponding to the ∆W (e)

out(t, ω) presented
on fig. 3.11. The initial 〈i(t)〉 and δfe(ω) appear as filled black curves.
For short propagation times (panels (a) and (c)), the current peaks are
not very well separated and no hole excitations are created but the quasi-
particle peak in the electron distribution function strongly decays. For
longer propagation times (panels (b) and (d)), hole excitations appear
as the current pulse fractionalizes in two well separated peaks whereas
the quasi-particle peak remains small.
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The many-body decoherence manifests itself through a striking phe-
nomenon: since it suppresses contributions arising from the initial coher-
ence ϕe(t+)ϕ

∗
e(t−) at different times t+ 6= t−, ∆W (e)

out(t, ω) only depends
on |ϕe(t)|2. Consequently, it only depends on the shape of the incoming
current pulse and not on its injection energy. This striking feature can be
easily tested in a HOM experiment: at fixed γe, the HOM curve should
not depend on the injection energy of the electron when ωe & γe. How-
ever, the precise shape of this curve depends on the effective interactions.

3.5.4 Experimental test

The decoherence scenario has been checked by the experimental group of
G. Fève, thus leading to a joint paper with Th. Martin’s group [Marguerite
et al., 2016b]. This work presents a detailed comparison of theoretical
predictions and experimental data for an HOM experiment involving
two single-electron sources located at approximately 3 µm from the beam
splitter (see fig. 3.14).

These two sources are driven by square voltage with repetition fre-
quency f = 0.9 GHz and a typical rise time of 30 ps. The peak-to-peak
amplitude matches the dot level separation ∆/kB = 1.4 K so that the
electron and hole excitations are emitted at ωe/2π ' 14 GHz above or
below the Fermi level. Two experimental parameters are available: the
dot transmission wich controls the escape time τe and a d.c. voltage ap-
plied to the dot’s top gate which allows some detuning of the emission
energies of one source with respect to the other. The values of τe are
obtained from the phase of the a.c. current (first harmonic) generated by
the source so it is an indirect determination with significative error bars.
These measurements can be checked against empirical fits performed on
the HOM curves although, in this case, a broadening from interchannel
Coulomb interaction is expected. Nevertheless, the two data sets are
to some extent compatible and typical values of τe range from 30 ps to
180 ps (first method of determination).

The evolution of a Landau excitation in the experiment, from its
emission by the source to the beam splitter is depicted on fig. 3.15. When
emitted, the electronic Wigner function exhibits some ripples of negative
or above-unity values characteristic from the non-classical nature of the
single-electron state. After a short propagation length, τs = 28 ps, before
the fractionalization has occurred, energy relaxes and the spectral weight
at ωe is transferred close to the Fermi energy. The non-classical ripples are
also almost completely washed out. For the longest propagation length
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Figure 3.14: (Extracted from [Marguerite et al., 2016b]) Modified
scanning electronic microscope picture of the sample. The electron gas is
represented in blue, the edge channels by blue (outer channel) and green
(inner channel) lines, and the metallic gates are in gold. The emitters
are placed at inputs 1 and 2 of the QPC used as an electronic beam
splitter. Single-electron emission by source i on the outer channel is
triggered by the square voltage Vexc,i of amplitude eVexc,i/kB = 0.7 K.
The dot-to-edge transmission of source i is tuned by the gate voltage
Vg,i. The central QPC is set to partition (R = 0.5) the outer channel
using the gate voltage Vqpc. Interaction regions of length l ∼ 3 µm are
represented by light blue boxes. Average a.c. current measurements are
performed on the splitter output 4 in order to characterize the source
parameters (in particular e). Low-frequency noise measurements S33 are
performed on output 3.
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Figure 3.15: Density plots for the Wigner representation of the excess
single-electron coherence at Tel = 0 K for different propagation lengths
corresponding to the sample used in the experiment. The time axis
are shifted by time τ− = l/vρ to account for the propagation time on
length l. For τs = 0, we have the excess Wigner function of a Landau
excitation emitted in the outer edge channel (blue line) with ωe = 0.7 K
and τe = 60 ps. Then the effect Coulomb interactions between the outer
and inner (green line) edge channels is taken into account and the right
most excess distribution is the one arriving at the QPC and used to
compute the HOM signal.

τs = 70 ps, the fractionalization in two distinct pulses occurs and appears
along the temporal axis. The value of τs = 70 ps is extracted from high-
frequency admittance measurements [Bocquillon et al., 2013b] performed
on a similar sample coming from the same batch and which confirmed the
validity of the short-range interaction model up to frequencies f = 6 GHz.
The same value has also been successfully used to describe the charge
fractionalization [Freulon et al., 2015] using the same sample as in the
present work (at the same value of the magnetic field). Since two pulses
of charge e/2 cannot correspond to a single-quasiparticle excitation of
the Fermi sea, collective neutral excitations are created. They appear on
the excess Wigner function as negative values below the Fermi energy
(corresponding to the creation of holes) compensated by an increase above
the Fermi energy (corresponding to the creation of the same number of
electrons).

Figures 3.16 and 3.17 present the comparison between theory and
experiments: experimental points are depicted as data points with their
error bars whereas full, dashed and dotted lines presents theoretical
curves.
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Figure 3.16: Comparison between theory and experiment when using
the same injection energies for both single-electron sources and varying
τe. Left panel: Wigner distribution function for the ideal single-electron
excitations corresponding to ωe and the three different values of τe
(starting from the top: black 140 ps, blue 91 ps, red 34 ps). Middle panel:
normalized HOM noise ∆q = ∆S(S1&S2)/(∆S(S1) +∆S(S2)) where ∆S
is the excess current noise (see eq. (1.97)), as a function of the time shift
between the two sources. This compares experimental data points and
theoretical predictions using both our zero-temperature computations
(dotted curves) and finite-temperature computations at Tel = 100 mK by
Th. Martin’s group (dashed curves). Right panel: theoretical predictions
for the outgoing excess Wigner distribution corresponding to the three
injected single-electron excitations of the left column. Their time-shifted
self-overlaps give the dotted curves (same color code).
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Figure 3.16 presents this comparison for various emission times τe
at a fixed and identical energy injection for both sources. Experimen-
tal data are represented together with theoretical predictions at zero
temperature and at Tel = 0.1 K, providing an evaluation of the effect of
finite-temperature on single-electron decoherence. The red, blue, and
black curves represent these theoretical predictions taking τe = 34, 91
and 147 ps. These values agree within experimental resolution with the
values of e extracted from the measurements of the average current. In
particular, for the short time τe = 34 ps, theoretical predictions capture
the broadening of the electronic wavepacket by the fractionalization pro-
cess, which leads to an overestimate by a factor 2 of the emission time
extracted from the exponential fit of the dip (although the experimental
resolution is not good enough to observe the predicted side peaks for
τe = 34 ps at 0.1 K). The agreement between data and predictions is
good: once the width of the dip has been chosen to match the data, the
values of the contrast also agree. Note that the effect of temperature
is very weak: this is explained by the fact that, the initial Landau ex-
citation being emitted at high energy compared to kBTel (7 times to
be precise), and the coupling being broadband, most of the generated
electron/hole pairs are not blocked by the thermally excited ones.

Figure 3.17 presents the data/model comparison when the emission
energies of the two sources are detuned. This is where a striking distinc-
tive prediction of the interaction model can be tested: the contrast and
shape of the HOM trace is almost unchanged when the emission energy
of one of the two sources is varied (from 0.7 K to 0.3 K). This behavior
is completely different from the non-interacting model predictions (black
and red blurred lines), for which the contrast varies strongly from 1 to
0.25 when the energies are detuned by 0.4 K at τe = 40 ps. Surprisingly,
in the detuned case, interactions lead to enhancement of the contrast
compared to the non-interacting prediction. This restoration of indis-
tinguishability by decoherence is a consequence of electronic relaxation
which erases the memory of the initial injection energy from the out-
going single-electron coherence after a long propagation. This erasure
effect is a consequence of the entanglement of the electronic degrees of
freedom of the outer edge channel where the single-electron excitation
is injected with the inner one. Quantitatively confirming this effect is
the most convincing signature of the single-electron decoherence scenario
described within the bosonization framework.
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Figure 3.17: Comparison between theory and experiment when using
different injection energies for both single-electron sources with the same
τe. Left panel: Wigner distribution function for the ideal single-electron
excitations corresponding to the two different injection energies (starting
from the top: red ~ωe/kB = 0.7 K, black ~ωe/kB = 0.3 K). Middle panel:
normalized HOM noise ∆q = ∆S(S1&S2)/(∆S(S1) +∆S(S2)) where ∆S
is the excess current noise (see eq. (1.97)), as a function of the time shift
between the two sources. This compares experimental data points and
theoretical predictions using our zero temperature computations (same
injection energy: red data points and dashed curves; different injection
energies: black data points and dashed curves). The blurred lines
correspond to the expected HOM signal in the absence of interactions
(same color code as before). Right panel: theoretical predictions for the
outgoing excess Wigner distribution corresponding to the injected single-
electron excitations of the left column. The proper time-shifted overlaps
give the dashed curves of the middle panel (same color code as before).
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3.6 On-going works and perspectives

In this section, I will briefly describe our on-going works that are based
on the ideals and methods we have developed to study single-electron
decoherence. The versatility of our approach in which the form of
the effective Coulomb interaction only appears through the functional
dependence of the edge-magnetoplasmon transmission t(ω) makes it very
easy to apply our technique to other physically relevant problems.

First of all, I would like to mention that ideally, it would be possi-
ble and interesting to perform a consistency check of our approach by
measuring on the same sample the finite-frequency admittances that
would determine t(ω) (see [Bocquillon et al., 2013b]) and then perform
either a single-electron tomography as described in section 1.6.2 or an
HOM experiment as described in the previous section to check for our
theoretical predictions. Moreover, thanks to the signal processing tech-
nique presented in chapter 2, we are not anymore limited to toy model
expressions for the single-electron wavepacket but we could extract them
from a more precise modeling of the source.

Then, I will now present some of the problems we are going to address
in our forthcoming publications. The study of electronic decoherence in
ideal ν = 1 edge channels and the analysis of decoherence control will
appear in a forthcoming publication currently under completion [Cabart
et al., 2017]. These problems are motivated by the present status of
experiments which are now able to probe electronic decoherence with
unprecedented accuracy.

We also plan to apply the technique to study the decoherence of an
electron initially delocalized on two copropagating edge channels which
are coupled to their environement and are possibly coupled together.
This problem is relevant for quantum spintronics at the single-electron
level and can also be viewed as a way to model propagation in a Mach–
Zehnder interferometer.

3.6.1 The ν = 1 case

Our approach can be applied to study the case of an ideal ν = 1 edge
channel system. By ideal, I mean without any dissipation: all the energy
injected into the edge channel remains in the edge channel. Consequently,
as explained before, there is no many-body decoherence. However, single-
electron decoherence is present due to Coulomb interactions within the
edge channel. An important question is to understand single-electron
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decoherence within this particular context, that is, when it solely arises
from intrinsic decoherence (no external environment).

In the model for edge-magnetoplasmon propagation along an interact-
ing ν = 1 edge channel presented in section 3.4.2, two velocities appear:
the velocity of low-energy edge magnetoplasmons which is greater than
the velocity of high-frequency edge magnetoplasmons. An important
question concerns the velocity of electronic excitations: is it the low-
energy velocity or the high-energy one? More generally, what is the
propagation velocity of the disturbance of the electronic fluid when an
electronic source is turned on?

Understanding electronic decoherence in the ideal ν = 1 edge channel
of single-electron excitations can shed some light on both problems. For
this, we are studying both the realistic model discussed in section 3.4.2
as well as a simplified toy-model in which the frequency-dependent
velocity is a Lorentzian that possesses two plateaus, corresponding to
a fast low-energy velocity and a slow high-energy velocity. What we
see for these two models is that when the electron excitation energy is
localized below the energy threshold that governs the transition from
fast to slow velocity, the initial wavepacket propagates without being
much altered, at the fast velocity. In the other cases, i.e. when the energy
of the excitation contains a non-negligeable part (if not all) above the
frequency threshold, the initial electron experience intrinsic decoherence
through the formation of electron/hole pairs. We observe on the current
that the excitation is enlarged in time, due to the fact that it moves both
at fast and slow speed. This is true even when the excitation is energy-
localized fully in the high-energy zone (or equivalently in the slow-speed
zone), because such an excitation will possess a non-vanishing plasmonic
content even at low frequency3.

3.6.2 Decoherence control

Another natural question is whether we can get rid off or, at least, mitigate
the effect of decoherence. For this, we are studying the possibility to
engineer the geometry of the inner channel, such as described in fig. 3.9
(lower pannel). This case can be seen as an effective single-channel
interaction.

3. If we think about a plasmon at a given energy ω, it is a coherent superposition
of all energy-resolved electron/hole pairs with energy ω. As such, it is not separated
from Fermi surface, and the only way to achieve this is by constructing a destructing
interference, thus populating low-energy plasmonic modes.
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We will discuss here the simplest case, when the outer channel fully
encloses the loop. In this case, the inner loop can be seen as a plasmonic
cavity with a characteristic resonance frequency ωc/2π and its harmonics.
First, let us consider weak coupling between edge channels (θ � π/2).
If we consider a plasmonic mode slightly modulated around ω, it will
propagate freely in the outer channel unless its energy is close to integer
multiple of ~ωc. When its energy is around ~ωc, the speed of this mode
drops suddenly, because of the time it spends inside the cavity. At weak
coupling, we have thus an effective ν = 1 system where the effective
edge-magnetoplasmon velocity now exhibits strong variations around the
resonances of the cavity. When injected below the first energy resonance,
the single-electron excitation will be mostly unaltered. However, when
the excitation passes above the first resonance of the cavity, there is a
quantitative difference, since it will weakly excite electron/hole pairs.
When increasing the coupling strength up to π/2, the scattering resonance
become less defined as usual when coupling a set of discrete levels with
a continuum. The effect of the cavity on an incident single-electron
excitation is then drastic: although when sent the excitation below the
lowest scattering energy resonance, it is almost preserved by this shaped
environment, the decoherence effect when the excitation is sent above it
is much stronger.

We are now using our approach to discuss experimentally relevant
situations, in which the inner channel is not fully enclosed by the outer
channel and using realistic parameters for the geometry. Results are in
fact being generated as I complete the writing of this thesis and will
therefore be detailed in [Cabart et al., 2017].

3.6.3 The delocalized electron

The creation of qubit from electronic modes is not as straightforward
as with bosonic ones because of the superselection rules discussed in
section 1.3.2. A way to avoid the difficulty is to use the so-called railroad
qubits encoding it in the quantum delocalization between the two edge
channels present at ν = 2. Since the channels are spin polarized, we are
indeed discussing a flying electronic spin quit.

In our case, the observable σz will correspond to the excess charge
difference between the two channels. Since this system is safe from tun-
neling, the states corresponding to charge totally localized inside one
channel will be pointer states. The coherences come from inter-channel
charge coherences, which will be both affected by inter-channel interac-
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tions and interactions of both channels with an external environment.
Or course, the difficulty comes from the fact that it will not be possible
to use the various energies to encode different spin qubits in parallel
because of electronic decoherence.

Using our method, we can compute what happens for the effective
qubit built from an arbitrary single-electron excitation when there are
only two channels or in the presence of an external environment. The
analytical expressions have been derived several years ago and some
preliminary exploration had been done during my Master internship but
the work has not been completed yet. We hope to complete it before the
end of C. Cabart’s PhD.

3.6.4 Perspectives

We have computed post-interaction single-electron coherence for a single-
electron excitation. The single-electron wavepacket we have used comes
from a toy model, which differs from the realistic wavepackets shown
in chapter 2. A first, simple extension of this work would be to study
the decoherence of a realistic wavepacket, making a bridge between our
signal processing techniques and the decoherence technique.

Another extension, far less trivial, is to see what happens for higher-
order, or with more electrons. Unfortunately, the number of terms in-
creases incredibly fast, even for second-order coherence with one electron,
or for first-order coherence with two electrons. This makes the general
method we have developed more than tricky to implement in practice.
This is even more regrettable since those two situations would be of great
interest. The first one would allow to probe the two-particle entangle-
ment generation from interactions. The second one would be a platform
to test two-electron interactions, probing the Coulomb interaction in a
metal in a rather elementary way. However, we hope that perturbative
developments for weak interactions will give some insights about these
cases. These issues will be more developed in C. Cabart’s PhD.

To end on, at the beginning of my PhD, we started to work on out-
of-equilibrium bosonization techniques. The hope was to compute the
post-interaction single-electron coherence in the case of Floquet sources
in full generality. This is indeed a much more complicated problem, since
in this case, the number of excess particle is unbounded. We hope the
work shown on the previous chapter will give us some hints to carry this
further.



Chapter 4

Energy flows in quantum
mesoscopic system

4.1 Motivation and scientific context

In the previous chapters, we have discussed probing a many-body quan-
tum source using single- and two-particle quantities in the spirit of
quantum optics. The study of electronic decoherence presented in the
previous chapter demonstrated the importance of considering the many-
body state of the whole system. In the case of chiral quantum Hall edge
channels, the proper many-body states were edge-magnetoplasmon co-
herent states.

In the present chapter, we explore the possibility of accessing infor-
mation on the many-body state using the statistical properties of global
quantities that probe electronic coherences to all orders. As it is already
clear from the discussion of current fluctuations in section 1.5, higher
moments of the electrical current are sensitive to higher-order electronic
coherences. In principle, the full counting statistics of charge transfer
[Levitov et al., 1996] would naturally provide useful information but I
was also motivated by conceptual issues related to quantum thermody-
namics. This is why, in this chapter, I will discuss energy exchanges
between mesoscopic systems and apply our approach to the study of
heat dissipation in quantum conductors, a problem that we will call the
quantum Joule effect.

As always with quantum systems, unperformed experiments have
no results [Peres, 1978]. For this reason, quantizing energy exchanges
between quantum systems requires an operatorial definition of the en-

207
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ergy received by one of the systems. In practice, in quantum mesoscopic
systems, this is not an easy problem as soon as one considers system that
can transfer energy over a large range of frequencies. A lot of effort is
devoted to building calorimeters that can measure an energy deposition
down to the energy of a single quantum. The difficulty is to achieve
broadband detection: a single artificial atom could detect a microwave
photon but within a narrow band around its resonance frequency. Build-
ing a calorimeter able to measure a global energy deposition at this level
of sensitivity is another story.

Recently, the group of J. Pekola in Aalto demonstrated a radiofre-
quency thermometry on a metallic island of micrometric size [Gasparinetti
et al., 2015], operated at cryogenic temperatures (. 100 mK). The prin-
ciple is based on the difference between the internal relaxation timescale
of the island and the timescale associated with energy relaxation in its
environment: absorption of energy leads to a temperature change that
can be detected. The small capacity of the island ensures a high sensi-
tivity of 90 µK/

√
Hz with a 10 MHz bandwidth, meaning that it could

detect energy depositions of the order of the energy of a single microwave
photon. More recent devices are based on a superconducting weak link
probed by sub-nanoseconds current pulse as a very sensitive thermometer
with very short response time [Zgirski et al., 2017]. In the end, there
is hope that some day, it will be possible to perform rapid and precise
energy measurement over a timescale comparable to the experimentally
relevant timescales and without being limited by the device bandwidth.

Foreseeing this future motivates to consider a measurement-based
approach, called the two-time measurement protocol, pictured on fig. 4.1.
The protocol goes as follows:

1. We start with the system of interest decoupled from every other
systems. As part of the experiment initialization, an energy mea-
surement is performed on the system. This initial energy Ei may of
course fluctuate from one realisation to another because of classical
fluctuations or because, right before the energy measurement, the
system has quantum coherences in the energy basis.

2. We then couple this system to other ones during a finite time.
This will generically give rise to an entangled state for all involved
systems.

3. We decouple the system of interest and then measure its energy
again. Denoting the resulting measurement value by Ef , we define
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Q = Ef − Ei as the energy (or heat when we are considering a
thermal reservoir) received by the system of interest. Since Ef and
Ei are fluctuating quantity, Q is also fluctuating in general. This
means that if we perform the experiment another time, different
values of Ef , Ei and thus of Q will be obtained.

4. Resetting and repeating the experiment enables us to collect statis-
tics and infer the probability density P (Q). In particular, we can
access its average and all its fluctuations as well as its cumulants.

It is important to note that the initial measurement of the energy is
essential. If the corresponding observable was not measured at the end
of the initialization phase of the experiment, the quantity Q would make
no sense: it would be contrafactual.

System of
interest

Measurement of Ei Global evolution Measurement of Ef

Other
systems

tti tf

Figure 4.1: Two time measurement protocol: the system is prepared
at the initial time ti in one of its eigen-energy states (energy Ei), it is
then coupled to its environment and at the final time tf and an energy
measurement is performed. The energy change is Q = Ef − Ei. The
experiment is repeated to access the statistics of Q. Note that the
measurement of Ei depletes all coherences between the eigen-energy
states of the system.

Of course, this scheme can be used in various situations including the
ones involving many subsystems. Here, we will focus on the case of single
system that is connected to an environment which will be at equilibrium
at a given temperature. Since we are interested in the heat dissipated
in the environment, the system of interest on which we perform energy
measurements will be the environment itself, as shown on figure fig. 4.2.

Before going into the detailed examples coming from photon and
electron quantum optics, let us make an apparent detour through the
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System Environment Measurement
int.

Figure 4.2: Typical mesoscopic physics lab experiment: a solid state
quantum device is never accessed directly but through measurements
performed in its electromagnetic environment part of which consists in
coaxial cables extracting and bringing microwave radiation to the device.

dynamics of open quantum system within a path integral perspective.
This will shed a new light on the dynamics of open system and will
provide us the necessary tools to analyze the statistics of energy transfers.
Then, in section 4.3 we will consider energy flows in electronic systems
and present our approach to the quantum Joule effect in section 4.4.

4.2 Path integral approach

Let us start our journey in the world of path integrals. We will present
a general approach of the dynamics of open quantum systems based on
Feynman path integral that will be relevant for discussing the statistics
of energy exchange with the environment. More precisely, we will first
briefly review Feynman path integral approach for closed and open
systems, before we extend it into a path-integral based formalism for
quantum trajectories. This will be our starting point for discussing energy
exchanges within the two-time protocol and obtain exact expression of
the heat flow for some systems.

As usual within the Feynman path integral approach, expressions take
a lot of space and using them for actual calculations is often a nightmare,
if not impossible in practice. Despite this slight inconvenience, the path
integral formalism sheds a bright light on the physical meaning of what
we are doing. We will thus spend some time on commenting each terms
in rather abstract expressions to gain some physical insight.

4.2.1 Variations on Feynman path integrals

Before we dig deeper into Feynman path integrals and their variations, let
us remind the terminology. Usually, paths in Feynman path integral are
thought as real paths. Of course, these can be paths for any complete set
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of observables1. Traditionally, one focuses on transition amplitudes that
give the probability to go from one point to another one or correlation
functions as in many quantum field theory textbooks. Here we will use a
reformulation of this point of view by expressing the evolution of states
as vectors in a Hilbert space as paths integrals themselves, thus mixing
both the standard operatorial concepts with Feynman’s path integral.

Closed systems

For a closed system, it is possible to compute transition amplitude to go
from one point xi at time ti to another point xf at time tf , by summing
over all paths γ that go from xi to xf the amplitude associated to this
path. This is often noted:

Ai→f = 〈xf , tf |xi, ti〉 =
∫ γ(tf )=xf

γ(ti)=xi

A[γ]D[γ], (4.1)

where A[γ] = exp(iS[γ]/~) is the amplitude associated to the path γ.
This amplitude is just a pure phase, proportional to classical action S[γ]
in the absence of any topological phase. Of course, the hard part comes
from the summation over all path. A variety of techniques have been
developed to compute this kind of integral and we will not get into the
details: there are many textbooks on the subject [Feynman and Hibbs,
1965; MacKenzie, 2000]. The most intuitive and direct approach would
be to discretize both time and the coordinate system (if it is not already
discrete) as sketched on fig. 4.3. The key point of our approach is to insert
the path integral expression of transition amplitudes into the expression
of the evolution of states in terms of these amplitudes. This leads to
an expression for the final quantum state of a system |ψ(tf )〉, initally
prepared in a pure state |ψ(ti)〉:

|ψ(tf )〉 =
∫

〈γ(ti)|ψ(ti)〉A[γ] |γ(tf )〉 D[γ]. (4.2)

From left to right, we recognize three factors. First, the scalar product
between |γ(ti)〉 and |ψ(ti)〉 is just the wavefunction of the initial state
expressed in the basis chosen to describe the trajectories. Then appears
the transition amplitude associated to the path, and finally the resulting
state associated to the terminal point of path |γ(tf )〉. This expression

1. In case of a 1/2-spin, we can consider the spin along one direction over time as a
path.
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xx0
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Figure 4.3: Paths in a discretized space. In order to obtain the transition
amplitude between (x0, t0) and (x5, t5), we need to sum all the amplitudes
of paths that connect them.

contains nothing new but as we shall see now, it leads to a surprisingly
transparent derivation for the dynamics of an open quantum system!

Open systems

For open quantum systems, we use the usual approach and consider that
the system comes along with an environment and that the composed
system is closed. In order to avoid difficulties arising from the presence
of pre-existing quantum correlations between the system and its environ-
ment, we shall always assume that the initial global state is factorized
between the system and its environment.

Pure case When the environment is initially in a pure state, it is possi-
ble to associate a pure state |Ψ(t)〉 to the composed system. Furthermore,
as the system follows a trajectory γ, the state of the environment is
changed according to a corresponding forcing thus leading to a time-
dependent imprint t 7→ |Et[γ]〉. Apart from simple cases, it is not obvious
how we can compute explicitly the state of the environment for a partic-
ular path followed by the system. However, this state always exists, as it
is shown in appendix E.1.

If the environment is purely classical, its state is not affected by the
evolution of the system and thus, up to a phase we have |Et[γ]〉 = |E0〉.
The only effect of the environment on the system is a modification of
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its action – as if the environment introduced a kind of refraction index
– but the quantumness of its evolution remains. Things become more
interesting when the state of the environment is altered depending on
the trajectory of the system.

The evolution of the composed system can then be easily described
using Feynman amplitude associated to the proper dynamics of the
system A[γ] and the state of the environment for a given trajectory:

|Ψ(tf )〉 =
∫

A[γ]〈γ(ti)|ψ(ti)〉 |γ(tf )〉 ⊗ |E [γ]〉 D[γ], (4.3)

where |ψ(ti)〉 is the state associated to the system at initial time. This
expression is very similar to eq. (4.2) except that it takes into account
the drive induced by the system on its environment.

Let us now focus on the dynamics of the open system under consid-
eration, forgetting whatever happens to the environment. To this end,
we trace out the degrees of freedom of the environment and obtain the
reduced density operator for the system:

ρS(tf ) =

∫
〈γ+(ti)|ρS(ti)|γ−(ti)〉 × A[γ+]A∗[γ−] (4.4a)

× 〈E [γ−]|E [γ+]〉 |γ+(tf )〉 〈γ−(tf )| D[γ+]D[γ−]. (4.4b)

Again, let us comment this expression factor by factor. The first two
factors are not different from what we have encountered for the closed
system case. The first one is the initial condition, and the second one
comes from the dynamics of the system alone. The last factor of the
full expression spans the density matrix in the coordinate space we have
chosen. The novelty in this expression comes from the third factor which
we will denote FFV [γ+, γ−] = 〈E [γ−]|E [γ+]〉. It is usually called the
Feynman–Vernon influence functional and contains all we want to know
about the influence of the environment [Feynman and Vernon, 1963].
Being a scalar product, it is a complex number whose modulus is less
or equal to unity. As mentioned above, we can interpret the phase as
an alteration of the self-dynamics of the system due to its environment.
The module ponderates the weight of the various couples of trajectories
(γ+, γ−). If, for example, the scalar product between two environment
states tends to be negligible for couple of trajectories being just slightly
different, interference effects will be killed and we recover a classical
dynamics in a path integral framework. The Feynman–Vernon influence
functional is a contrast factor governing the interference of paths in the
path integral.
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General case The case of an initial mixed state for the environment
can easily be obtained from previous discussion. We will suppose that
we will start from a factorized state ρ(ti) = ρS(ti)⊗ ρE(ti). In this case,
we can proceed with the same method and we obtain

ρS(tf ) =

∫
〈γ+(ti)|ρS(ti)|γ−(ti)〉 × A[γ+]A∗[γ−] (4.5a)

×FFV [γ+, γ−] |γ+(tf )〉 〈γ−(tf )| D[γ+]D[γ−], (4.5b)

where the Feynman–Vernom functional is modified to take into account
the statistical nature of the initial condition

FFV [γ+, γ−] = tr (U [γ+] ρE(ti)U [γ−]) , (4.6)

where U [γ] denotes the evolution operator for the environment when the
system follows the trajectory γ.

Quantum trajectories

Now that we have reviewed the traditional Feynman path integral for
closed and open quantum systems, we will now show that quantum
trajectories [Dalibard et al., 1992; Molmer et al., 1993] can also be
formulated in terms of Feynman path integrals. The advantage of this
generalization is that it defines the notion of a quantum trajectory in a
very general way, not relying at all on any Markovian hypothesis.

In the usual approach to decoherence, the environment is traced
out, and the information it contains about the system is completely
forgotten. However, in the last decades, we have seen the existence of
more and more controlled systems for which it is now possible to measure
a significative part of the environment. In this case, it is possible to make
deductions about the state of the system. In the ideal case where we can
perfectly measure the whole environment, it is even possible to associate
and compute a pure quantum state of the system along its evolution,
given the measurement results. This state, conditioned or relative to
a measurement result is what is called a quantum trajectory. In this
section, we will consider only this ideal case, where the measurement
gives a complete knowledge of the environment. The general case, with
incomplete measurement is more tedious. However, for our two-time
measurement protocol as we will see in section 4.2.2, we can use a fine-
grained measurement, which is complete, and then average over the
unobserved degrees of freedom.
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An example of an ideal measurement record for an quantum electronic
system would be, for example, a record of a voltage at one end of
a transmission line as a function of time. But it could also be some
information in the time/frequency domain... or maybe in the frequency
domain when using a spectral analyzer. With this in mind, we will
consider that a measurement record is a function. Usually, it is a
measurement in the time domain but this is not necessarily the case.

Of course, each possible measurement record corresponds to a state
for the environment. All possible records α 7→ x(α), correspond to an
orthogonal basis for the environment since they are perfectly distinguished
by the measurement apparatus! We denote this orthonormal basis
by (|[x]〉)[x]. Given a pure state |Ψ(tf )〉 for the composed system, it is
possible to decompose the environmental part onto the basis given by
our measurement apparatus:

|Ψ(tf )〉 =
∫ √

p[x] |ψ(tf |[x])〉 ⊗ |[x]〉D[x], (4.7)

in which the normalized state |ψ(tf |[x])〉 is called the conditioned or rela-
tive state [Everett, 1957a] of the system with respect to the measurement
record [x] and p[x] denotes the probability of the corresponding record.
Of course, in general, those states are not orthogonal for different mea-
surement record.

In the following, it will be more convenient to keep trace of the
probability of a given record in the norm of the state. We will thus
introduce the non-normalized state

|ψ(tf ; [x])〉 =
√
p[x] |ψ(tf |[x])〉 . (4.8)

We will call it a state joint to the measurement [x], by analogy with
joint probabilities. One advantage is that it is then more compact to
use expressions based on joint states. The other advantage will appear
clearly in the following.

A natural question is to relate the trajectory vision to the reduced
density matrix of the system. To do this, we simply forget the measure-
ment record by averaging over the probability distributions of all the
measurements results:

ρS(tf ) =

∫
p[x] |ψ(tf |[x])〉 〈ψ(tf |[x])| D[x]

=

∫
|ψ(tf ; [x])〉 〈ψ(tf ; [x])| D[x].

(4.9)
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Since the quantum trajectory method associates with each measurement
record a pure quantum state for the system, it is natural to ask whether
a Feynman path integral formulation exists for this state.

This question makes sense when the environment is initially prepared
in a pure state. Then using the path integral expression for the full
quantum state of the system and its environment, and decomposing the
environmental states |E [γ]〉 onto the measurement results basis, we obtain
a path integral expression for the joint state of the system |ψ(tf ; [x])〉:

|ψ(tf ; [x])〉 =
∫

〈γ(ti)|ψ(ti)〉 A[γ] 〈[x]|E [γ]〉 |γ(tf )〉 D[γ]. (4.10)

Once again, this expression is a minimal modification of eq. (4.2), obtained
for closed system. The only novelty is the factor 〈[x]|E [γ]〉, which encodes
alterations made to the dynamics of the system from measurement. The
only effect of measuring on the environment is to introduce a linear filter
within the path integral!

The scalar product 〈[x]|E [γ]〉 has a modulus and a phase. The modu-
lus part will select some classes of trajectories, potentially suppressing
some paths. The phase will add up to the action, giving an new effective
action for the system. This corresponds to the quantum backaction of
the measurement in the system: its dynamics is modified depending on
the measurement performed in the environment.

We can also derive expressions when the initial state is not pure,
either for the environment or the system. In this case, it is possible to
write down a path integral expression similar from eq. (4.5b), for what
we call the joint density operator of the system:

ρS(tf ; [x]) =

∫
〈γ+(ti)|ρS(ti)|γ−(ti)〉 × A[γ+]A∗[γ−] (4.11a)

×F [γ+, γ−;x] |γ+(tf )〉 〈γ−(tf )| D[γ+]D[γ−], (4.11b)

where we have introduced F [γ+, γ−;x] the influence functional condi-
tioned to measurement x, defined by

F [γ+, γ−;x] = 〈[x]|U [γ+]ρE(ti)U
†[γ−]|[x]〉 . (4.12)

As expected, summing up these functionals over all possible measurement
records gives back the Feynman–Vernon influence functional.

Once again, the operator ρS(tf ; [x]) is not trace-normalized. Its trace
is nothing but the probability of the measurement record [x]. Of course,
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it is possible to renormalize it and this leads to the reduced density
operator for the system, conditioned or relative to the measurement
ρS(tf ; [x]) = p[x]ρS(tf |[x]).

4.2.2 Energy flows and Feynman path integral

Let us now introduce the two-time measurement protocol in the light
of the path integral approach. The basic idea is to define quantum
trajectories associated with a given heat exchanged Q. Namely, we
ultimately want to access p(Q) = tr(ρ(tf ;Q)). To this end, we need to
compute the associated influence functional F [γ+, γ−;Q], since we can
express the probability of a given heat as a trace, which is a double path
integral

p(Q) =

∫
γ+(tf )=γ−(tf )

〈γ+(ti)|ρS |γ−(ti)〉

×A[γ+]A∗[γ−]F [γ+, γ−;Q]D[γ+]D[γ−].

(4.13)

A first remark is that there are many possible microscopic states for each
Q. They arise from three different reasons. First, energy levels in the
environment are generically degenerate, allowing to have two microscopic
states with the same energy. Second, it is possible that two different
microscopic configurations of the environment lead to the same energy by
different arrangement of populations in the various energy levels. Finally,
since the initial state is not pure in general (it would be a thermal state),
it is possible to start from two different microscopic configurations that
possess different energies, but that the exchanged energy with the system
is the same in the end. In order to treat all those possibilities, we will
first make them explicit and then average over them. This is made
possible because we consider that the initial state for the environment
is a thermal state, which is diagonal in the energy basis. This is an
important assumption here, which justifies to call the energy exchanged
“heat”.

We will thus assume that the apparatus is able to measure the
population in each non-degenerate energy level, effectively measuring
the environment in its full energy eigenstate basis. For example, if we
suppose that we have a continuum of bosonic modes, it would correspond
to access to the number of bosons in each frequency mode (Fock basis). If
we denote Ni the result of the first measure in the two-time measurement
protocol, and Nf the second one, we can then compute the influence
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functionals associated to the transition from Ni to Nf :

F [γ+, γ−;Ni → Nf ] = 〈Ni|U †[γ−]|Nf 〉 〈Nf |U [γ+]|Ni〉 , (4.14)

where we suppose that the environment starts in Ni. From this, we can
compute the influence functional of a given energy exchange by summing
the influence functional corresponding to all possibilities associated with
this exchange. Starting from a situation in which energy levels are
populated with probabilities pi[N ], the influence functional F [γ+, γ−;Q]
is

F [γ+, γ−;Q] =

∫
pi[Ni]F [γ+, γ−;Ni → Nf ]

× δ(Q− (E[Nf ]− E[Ni]))D[Ni]D[Nf ],

(4.15)

where E[N ] is the energy associated to configuration N .
Unfortunately, directly computing F [γ+, γ−;Q] is really hard. In-

stead, we will compute its Fourier transform along Q which would give
us access to the generating function for the probability density function.
This is why we will call the Fourier transform the generating functional
of heat. Its expression is quite compact if the environment is in an equi-
librium state at temperature kBT = 1/β, at the initial time2:

F̂eq(γ+, γ−;λ) =

∫
eiλQFeq[γ+, γ−;Q]dQ (4.16a)

=
1

Zβ
tr
(

eiλHEU [γ+]e−(β+iλ)HEU †[γ−]
)
, (4.16b)

where HE is the Hamiltonian of the environment alone and Zβ denotes
its equlibrium partition function at inverse temperature β.

Equation (4.16) is the best expression we can have in the general case
with an environment initially prepared in a thermal state. Going beyond
it requires using a specific model for the environment.

Harmonic bath linearly coupled to the system

Starting from now, we shall consider an environment built from uncoupled
harmonic oscillators as in [Caldeira and Leggett, 1985] and [Feynman
and Vernon, 1963]. Natural examples include phonon and photon baths

2. This is what we expect from a thermostat or energy reservoir. A key point is
that to quantify heat, we need a reservoir prepared in a state that has no coherences
in the energy basis.
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but artificial systems can be designed to enforce a certain texture of the
oscillator bath. For example, nanofabricated circuits can be manufactured
so that it is possible to go from situations with a continuum of modes
(that is the case in a transmission line) to situations where a single mode
with quality factor up to 106 can be addressed [Frunzio et al., 2005].
As a matter of fact, most natural environments behave as harmonic
baths [Weiss, 1999] except for nuclear spins in materials [Prokofev and
Stamp, 2000] and specially manufactured mesoscopic systems such as
non-linear transmission lines built from Josephson junctions which can
exhibit strong non linearities [Bourassa et al., 2012; Weißl et al., 2015].

As such, we will consider a set of oscillators, that can be either finite
or infinite, discrete or continuous. For simplicity, we shall use discrete
notations, but there are no difficulties to take the continuum limit. We
will thus consider that each oscillator is labelled by α, and possesses a
frequency ωα. A Fock state described by a record N = (nα), where nα
indicates the number of excitations in the oscillator α, would possess an
energy

E[N ] = ~
∑
α

nαωα. (4.17)

In order to define completely the environment we also need to choose
the coupling between the system and each oscillator. In this section, we
will consider the simplest form of coupling, which is the linear coupling
between the system and the position of each oscillator. If we consider
xS as the operator associated to the observable we used to describe the
trajectory γ of the system, and aα, a†α the ladder operators for oscillator
α, the interaction can be written as

Hint = ~
∑
α

gαxS(aα + a†α), (4.18)

where gα ∈ R is the coupling constant between the system and oscillator
α.

The fact that, system-wise, interaction only concerns xS , which is
the observable on which the path is described, makes it easy to compute
the evolution of oscillators associated to a particular path: we just have
to replace xS by its classical value γ(t), to find the forced evolution
operator. Furthermore, since we are looking for linear coupling between
the system and oscillators, the evolution of oscillators is just a linearly-
forced evolution. It is well known that this kind of evolution is just a
displacement operator and a phase, that depends on the frequency of
each oscillator and on the form of the forcing.
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Since it is a very standard problem in quantum mechanics, we won’t
derive fully the expressions for the operator U [γ] here. The reader can
refer to [Le Bellac, 2003]. In the end, the evolution operator is given by:

U [γ] = eiθ[γ]D(Λ[γ]), (4.19)

where θ is a phase that depends on the path, and D(Λ[γ]) is a multimode
displacement operator. If we compute everything, and introduce the
operator that displaces oscillator α by Λα, Dα(Λα), we get:

θ[γ] =

∫ tf

ti

∫ tf

t

γ(t)γ(t′)

2

∑
α

g2α sin
(
ωα(t− t′)

)
dt′dt, (4.20a)

D(Λ[γ]) =
⊗
α

Dα(Λα[γ]) Λα[γ] = − i√
2

∫ tf

ti

eiωαtγ(t)dt. (4.20b)

From this, we can derive an expression for Feq. Since this is a bit
technical, we will skip the detail here, the interested reader can find them
in appendix E.2. If we introduce n̄α the average number of bosons at
the initial temperature T in the oscillator α, we have

F̂eq[γ+, γ−;λ] = FFV,T [γ+, γ−] (4.21a)

×
∏
α

exp
(
(1 + n̄α)(ei~λωα − 1)Λα[γ+]Λ

∗
α[γ−]

)
(4.21b)

×
∏
α

exp
(
n̄α(e−i~λωα − 1)Λ∗

α[γ+]Λα[γ−]
)
, (4.21c)

where FFV,T is the Feynman–Vernom functional at temperature T . Since
it is what we find when no measurement record is kept, we recover it
when λ = 0, which corresponds to averaging over all possible values of Q.
It is “solely” a constant with respect to Q. However, it will play its usual
role on the dynamics, influencing the probability density by affecting
trajectories. Its expression is

FFV,T [γ+, γ−] = ei(θ[γ+]−θ[γ−])

×
∏
α

exp
(
−(1 + 2n̄α)

(
|Λα[γ+]|2 + |Λα[γ−]|2

)
/2
)

× exp ((1 + n̄α)Λα[γ+]Λ
∗
α[γ−])

× exp (n̄αΛ
∗
α[γ+]Λα[γ−]) .

(4.22)

Of course, we have FFV,T [γ, γ] = 1.
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Even though eq. (4.21) may seem complicated, it is still possible to
understand the meaning of each of its factors. First, for each oscillator
α, it is only possible to have energy exchange by integer multiples of
~ωα. Thus, if we have a discrete number of modes, heat can take
values only on a discrete set. Furthermore, contribution (4.21c) vanishes
when T = 0 K, and can thus be attributed to absorption processes.
Conversely, contribution (4.21b) can be attributed to emission processes.
Quite interestingly, those contributions arise with factors n̄α, reminding
of absorption processes, and n̄α + 1 reminding of the combination of
stimulated and spontaneous emission processes.

Quantum Bremstrahlung within a cavity

Even though the result given in eq. (4.21) is, for itself, quite satisfactory,
it seems that we are still a bit far from the probability distribution. As
usual, we will specialize the model. But before we concentrate on the
environment, let’s simplify the dynamics of the system.

Here, we will consider a system that is constrained onto two qua-
siclassical paths, that arrive at the same spot. That is typical of a
Mach–Zehnder interferometer or a two-slit experiment. Of course, due
to Heisenberg principle, it is not possible to constrain the particle on an
infinitely thin path. What we are doing is rather an effective description
where there can be quantum fluctuations around a classical path, as
pictured on fig. 4.4. What we suppose is that if the particle travels on
one path, it will affect the environment in the same way, whatever the
fluctuation nearby this path. Similarly, since we are nearby quasiclassical
trajectories, we will suppose that the classical action is identical for each
trajectory around the quasiclassical one.

γi(ti)

t 7→ γ1(t)

γi(tf )

t 7→ γ2(t)

Figure 4.4: Clustering of trajectories γ in a gedanken two-path interfer-
ometry experiment: the source emits particles from the initial position
S = γ1,2(ti) which are detected at position D = γ1,2(tf ). Paths are clus-
tered in two families γ1,2.
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We can then compute an effective amplitude, associated to all trajec-
tories nearby γ1 and γ2. This amplitude Aeff[γ] will be proportional to
the action, up to a non-zero complex number. We will decompose it as a
modulus part, which will dictate the relative weight of each trajectory
and a phase that will be an effective action. As such, we will have

Aeff[γi] =

√
pi
N

eiSeff,i/~ i ∈ {1, 2}, (4.23)

with p1 + p2 = 1, the normalized weights for each trajectory, N being a
normalization factor ensuring that the resulting state is normalized. Its
expression is

N = 1 + 2
√
p1p2<

(
ei∆Seff/~FFV,T [γ1, γ2]

)
, (4.24)

where we introduced the difference of action between the two quasiclassi-
cal trajectories

∆Seff = Seff,1 − Seff,2. (4.25)

Now that we have simplified the dynamics for the system, let’s take
some care about the environment. We will consider here the simplest
possible environment, which is a single harmonic oscillator, at frequency
ω. This implies that energy exchange will happen at integer multiple
of ~ω. It is also simpler to express the amplitude of the displacement
induced by the system when it follows a given trajectory, by splitting
the energy of the displacement and its phase. Thus, we will introduce
for each trajectory i ∈ {1, 2}:

Λ[γi] =
√
Nieiφi , (4.26)

where Ni would be the average photon number after the system has
followed path γi if we started with the environment in the vacuum, and φi
would be the average phase. Since there are no absolute phase reference,
we will look at relative phase between one path and one another. To this
end, we introduce the following notations

∆θ = θ[γ1]− θ[γ2] ∆φ = φ1 − φ2. (4.27)

We refer the reader to appendix E.3 for the computation giving the result.
What we will do here is to decompose the probability of a given heat
into two contributions: a first that comes from classical paths, γ+ = γ−,
and another that comes from interfering quantum paths, γ+ 6= γ−. Of
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course, the total probability will be the sum p(Q) = pcl(Q) + pqu(Q).
The classical contribution reads

pcl(Q) =
1

N

∑
i∈{1,2}

pif

(
Q

~ω
;Ni(1 + n̄), Nin̄

)
, (4.28)

where f(n;x, y) is the Skellam law of parameters (x, y) (see appendix E.3).
It corresponds to the probability distribution associated to a random
variable Z = X − Y , where X and Y follow Poisson laws of average
x and y respectively. It is thus possible to understand it, for a given
trajectory γi, as the convolution of emission events with an average
Ni(1 + n̄) and of absorption events, with an average Nin̄. If we start
at zero temperature, we recover a Poisson distribution of parameter Ni,
for each trajectory, which accounts for the statistics of a coherent state.
Since here we consider classical couples of trajectories, we just have to
sum up each distribution, weighted by its probability.

We can also look at the part of the probability distribution arising
from non-classical couples of trajectories:

pqu(Q) = 2

√
p1p2

N
e−(1+2n̄)(

√
N1−

√
N2)2/2

× cos
(
∆Seff
~

+∆θ +
Q

~ω
∆φ

)
× f

(
Q

~ω
;
√
N1N2(1 + n̄),

√
N1N2n̄

)
.

(4.29)

We again find a Skellam law, whose parameters are the geometric means
of the parameters for each classical trajectory. More than that, there are
two interesting factors. First, there is a cosine oscillation. This oscillation
is of course, a trace of quantum interference between two paths. That
is the trace we want to look at to prove coherent behavior between the
two paths. There is also an attenuation factor, that is exponential in the
number of thermal excitations as well as in the difference of energy in the
driving. It means that if the driving gives different average energy for two
trajectories, there will be an exponential suppression of the interference
contrast as the average number of thermal excitation increases.

However, we can completely cancel this factor if the driving gives
the same average energy for two trajectories. Physically, it is expected,
since we are measuring everything in the energy basis. Information
about the trajectory of the system would be, in this case, completely
encoded into the phase of the oscillator, which is inaccessible from energy
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measurement. In other words, it would be completely impossible to say
which trajectory was chosen by the system from an energy measurement
in this case, conserving completely the coherences. Obviously, this
situation would correspond to N = N1 = N2. We can further simplify
and imagine that each path is followed with the same statistical weight,
giving p1 = p2 = 1/2. That would be the case, for example, with a
perfectly balanced beam splitter. In this case, the probability to obtain
a given heat would be

p(Q) =
1

N
f

(
Q

~ω
;N(1 + n̄), Nn̄

)
×
(
1 + cos

(
∆Seff
~

+∆θ +
Q

~ω
∆φ

))
.

(4.30)

This is a Skellam law modulated by a cosine, as can be seen on fig. 4.5.
The Skellam law parameters are fully determined by initial temperature
and the energy of the driving. By contrast, the speed of the modulation
is determined by the phase difference of the coherent states. Two extreme
cases would be ∆φ = 0, in which the two states in the environment would
be completely indistinguishable. In this case, the modulation completely
disappears, since Q/~ω must be an integer. On the other hand, if the
phase between two coherent states is ∆φ = π, as depicted on fig. 4.5, it
is possible to have a completely different situation for different dephasing
∆S/~+∆θ. If this phase is 0 or π, there will be a blocking of half of the
possible emission, leading to Q/~ω being either even or odd. By contrast,
if the phase determined by ∆S/~+∆θ is ±π/2, there are no modulation,
despite the fact that the quantum coherence is fully preserved in the
environment for different trajectories.

4.3 Energy flows in electronic systems

In this section, we just derive expression for the energy flow in one
dimensional ballistic conductors. Such results are not really new but the
visit of M. Moskalets has incited us to clarify these notions for our future
work. Previous studies on these questions may be found in [Battista
et al., 2013; Ludovico et al., 2014; Battista et al., 2014; Moskalets, 2014a;
Ludovico et al., 2016].
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Figure 4.5: Probability distributions for the number of quanta emitted
in as a function of the thermal photon number n̄ and of the number N
of photons emitted along a single trajectory of fig. 4.4.
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4.3.1 One-dimensional non-relativistic free fermions

Let us consider a Fermi gas of non-relativistic fermions in an external
time-dependent potential U(x, t) whose Hamiltonian is expressed in terms
of fermionic creation and annihilation operators ψ(x, t) and ψ†(x, t):

Hkin =
~2

2m

∫
(∂xψ

†)(x) (∂xψ)(x)dx, (4.31a)

Hpot =

∫
U(x, t) (ψ†ψ)(x)dx. (4.31b)

The operator Ex1,x2 representing the energy of the system between two
positions x1 < x2 is given by the same expressions as above with integrals
limited to the [x1, x2] interval. Using Heisenberg equations of motion for
ψ and ψ†, the derivative of this operator can be written as:

dEx1,x2(t)

dt
=

∫ x2

x1

(∂tU)(x, t)(ψ†ψ)(x, t)dt (4.32a)

−
∫ x2

x1

i~
2m

∂x

(
(∂xψ

†)ψ − ψ†(∂xψ)
)
(x, t)U(x, t)dx (4.32b)

−
∫ x2

x1

∂x (Jkin(x, t)) dx, (4.32c)

where the kinetic energy current is given by

Jkin(x, t) =
i~3

4m2

(
(∂2xψ

†)(∂xψ)− (∂xψ
†)(∂2xψ)

)
(x, t). (4.33)

The right-hand side of eq. (4.32a) is associated with varying the external
potential, which justifies calling it an external work contribution, whereas
the remaining terms represent the variation associated with the kinetic
and potential energy flows. One recognizes eq. (4.32b) as U(x, t)jP (x, t)
where

jP (x, t) =
i~
2m

(
(∂xψ

†)ψ − ψ†(∂xψ)
)
(x, t) (4.34)

denotes the particule current. Finally, the kinetic energy contribution to
the variation of Ex1,x2 is expressed as the divergence of the kinetic energy
current given by eq. (4.33). When the external potential is uniform but
time dependent, then the energy variation decomposes into the work
contribution (right-hand side of eq. (4.32a)) and a total energy current
flow

JE(x, t) = Jkin(x, t) + U(t) jP (x, t). (4.35)
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4.3.2 Chiral fermions: expansion near kF

Let us now consider a 1D fermion system whose ground state is a filled
Fermi sea up to momentum kF . We want to consider how excitations
with momentum k = kF + q where |q| � kF , that is excitations close
to one of the Fermi points, contribute to the energy flow. They are the
right-moving slow fermionic modes described the operator ψR(x) such
that

ψ(x) = eikF xψR(x). (4.36)

The Fermi energy is then given by EK = ~2k2F /2m and the Fermi
velocity is vF = ~kF /m. For fermionic excitations of momentum close to
~kF , the single-particle energy is E(kF + q) = EF + ~vF q +O((q/kF )

2

showing that (q/kF )
2 is the small parameter measuring deviation to the

linear dispersion relation E(kF +q) = EF +~vF q. We shall now compute
the main contributions to particle and energy currents associated with
electronic excitations close to the Fermi level.

Let us start with the particle current given by eq. (4.34) which then
becomes

jP (x, t) = vF (ψ
†
RψR)(x, t) (4.37a)

+
ivF
2kF

(
(∂xψ

†
R)ψR − ψ†

R(∂xψR)
)
(x). (4.37b)

Note that the second term is subdominant with respect to the first one,
being scaled down by a factor |q|/kF � 1.

We now turn to the kinetic energy current Jkin(x) defined by eq. (4.33).
We find that:

Jkin(x) = vFEF (ψ†
RψR)(x) (4.38a)

+ vF
i~vF
2

(
(∂xψ

†
R)ψR − ψ†

R(∂xψR)
)
(x) (4.38b)

+ vF
EF

2k2F

(
(∂2xψ

†
R)ψR + ψ†

R(∂
2
xψR)− 4(∂xψ

†
R)(∂xψR)

)
(x)

(4.38c)

+ vF
iEF

2k3F

(
(∂2xψ

†
R)(∂xψR)− (∂xψ

†
E)(∂

2
xψR)

)
(x). (4.38d)

The first term corresponds to the Fermi energy carried by each particle
and, not surprisingly, this is the main contribution to the kinetic energy
current. The second term arises from the linear dispersion relation:
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although a particle with momentum k = kF + q has, in this linear
dispersion approximation, a constant velocity vF , its energy differs from
EF by ε(q) = ~vF q. The third and fourth terms are subdominant with
respect to the second one and arise from deviations to the linear dispersion
relation.

In the following, we will consider a reference situation where a Fermi
sea is present. The confinement potential of the electrons should then
be taken into account but within the bulk of the material, it would only
contribute to the change of Ex1,x2 through the term −U(t) ∂x(jP (x, t)).
In a stationary situation, the total energy current given by the sum
of this contribution and of the kinetic energy current (see eq. (4.35)).
Using the expansion of the particle current eq. (4.37), the part due to the
potential energy thus adds to the first two terms given by eqs. (4.38a)
and (4.38b). It will thus contribute to a redefinition of the Fermi energy
that takes into account the confinement potential which defined the
bottom of the electron band and to a redefinition of the Fermi velocity.
The modification of the Fermi velocity is of order U/~vFkF which is a
small correction and thus will be neglected.

In the end, keeping only terms of the first order in q/kF , we find that
the energy current in the 1D chiral edge channel is of the form

JE(x) = vF
i~vF
2

(
(∂xψ

†
R)ψR − ψ†

R(∂xψR)
)
(x) (4.39a)

+ vF (EF + U(t))(ψ†
RψR)(x). (4.39b)

Note that this contains the contribution of the whole Fermi level. In the
following, we will redefine origins of energies so that EF is taken to zero.
The potential being present in eq. (4.39), the effect of a change of the
electric potential of the 1D chiral channel is still taken into account.

4.3.3 Energy current, electronic coherences and edge mag-
netoplasmons

Let us now focus on the average of the total energy current (4.39) for
EF = 0, in the absence of an electric potential applied to the conductor
(U(t) = 0) and relate it to single-electron coherence. By doing so, we
will connect the electronic coherence properties to the heat transport.
Moreover, we will derive the corresponding expression in the bosonization
formalism.
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Average energy current from electronic coherence

The average of the energy current JE(t) is then nothing but

〈JE(x, t)〉ρ = i~vF∂τ
(
G(e)
ρ,x

(
t+

τ

2
, t− τ

2

))
τ=0

. (4.40)

Of course, this already contains the infinite contribution of the Fermi sea.
As usual, the expression is regularized by taking the normal ordering
with respect of the chemical potential µ = 0 within the edge channel
and expressing the single-electron coherence in terms of the electronic
Wigner function W (e)(t, ω), we find the average excess energy current:

〈jH(x, t)〉ρ =

∫ +∞

−∞
~ω∆0W

(e)
ρ,x(t, ω)

dω

2π
, (4.41)

in which ∆0 denotes the excess contribution with respect to the reference
state |Fµ=0〉. The average excess energy current thus appears as the
“average” single-particle energy over the quasi-probability distribution
given by the excess Wigner function at time t.

Electrochemical energy versus heat

Let us now consider a 1D chiral edge channel at zero temperature con-
nected to an electron reservoir at a possibly non-zero chemical potential
µ. According to eq. (4.41) there is a non-zero energy current compared
to µ = 0. It is given by

j
(ech)
E (µ) =

µ2

2h
. (4.42)

This is called the electrochemical energy current since it is due to the
shift of the electrochemical potential. Note that it does not correspond
to heat: no thermal excitations have been generated, since the many-
body state |Fµ〉 is pure.

When dealing with a general many-body state ρ of the electron fluid,
the energy current at position x can thus be decomposed in two distinct
contributions. The first one, j(ech)

E (µ(x)) is the electrochemical energy
current associated with the local chemical potential µ(x) at position x.
The second one corresponds to the average energy of all the excitations
present in the fluid:

〈jE(x, t)〉ρ = j(ech)(µ(x)) + jH(x, t). (4.43)
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Since the states ρ viewed at position x and |F 〉µ(x) correspond to the
same superselection sector in terms of total fermion number, the heat
current is only due to electron/hole pairs with respect to the chemical
potential µ(x).

Edge magnetoplasmons and heat flow

In the bosonization technique, the edge-magnetoplasmon operators b(ω)
and b†(ω) are precisely the ones that generate all the excitations over
each superselected vacuum. It is thus natural to discuss the heat current
in term of these operators. Although expression eq. (4.40) is true on
average, it suggests to consider the operator product3

O(t, τ) = ψ†
(
t− τ

2

)
ψ
(
t+

τ

2

)
, (4.44)

whose expansion, at first order in τ is

O(t, τ) = ψ†(t)ψ(t) +
1

2

(
ψ†(∂tψ)− (∂tψ

†)ψ)
)
(t) +O(τ2). (4.45)

We can then consider the operator product O(t, τ) and use the expression
of fermionic fields in terms of the bosonic field defined by eq. (3.47). This
leads to the following expression for the heat current operator in terms
of the electrical current:

jh(x, t) =
h

2e2
‡i(x, t)2‡, (4.46)

where ‡A‡ denotes bosonic normal ordering of operator A. Interestingly,
we recover the relaxation resistance of a single coherent electronic channel
Rq = h/2e2. Since edge magnetoplasmons describe the excitations that
carry the heat flow, I conjecture that there is an interesting relation
between quantum optics of noise discussed in section 3.3 and statistical
properties of heat flow. Since its exploration is still underway, I will
not elaborate further on this topic but instead describe my work on the
determination of the statistics of dissipated heat in quantum conductors.

4.4 Joule heating in quantum conductors
In a classical macroscopic conductor, Joule heating arises from the
inelastic processes within the conductor: electrons injected through the

3. Here we drop the x coordinate for simplicity.
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lead experience inelastic collisions which lead to an energy cascade from
the electronic degrees of freedom to the acoustic phonon and the resulting
heating generates photons as in incandescence bulbs. Any description
of Joule heating must include a coupling of the electronic degrees of
freedom to environmental degrees of freedom within the conductor.

On the other hand, in a quantum conductor, electron delocalization
implies that the electronic transport properties of a quantum conductor
cannot easily be decomposed into contact and bulk properties. For ex-
ample, the d.c. conductance of a clean ballistic single channel quantum
wire is e2/h regardless of interactions because of contact resistances [Safi
and Schulz, 1995a]. One should thus expect that, in the absence of cou-
plings to external dynamical degrees of freedom, dissipation in quantum
conductors occurs within the electronic reservoir, i.e. at the contacts.
This explains why dissipation in an ideal 1D quantum wire is given by
the quantum of resistance RK = h/e2 even in the presence of interac-
tions [Safi and Schulz, 1995a; Safi, 1997]. This corresponds to the series
addition of two contact resistances h/2e2 for a single coherent channel.
In quantum Hall experiments, the fact that dissipation occurs at the
contacts has been beautifully confirmed by direct imaging [Klass et al.,
1990].

Nevertheless, ballistic quantum conductors may not be totally isolated
from external degrees of freedom: energy may be dissipated through
electron/phonon coupling and moreover, at finite frequency, through
capacitive couplings to nearby conductors which may provide dissipation
channels. We could thus expect a remote Joule heating effect: the
quantum conductor itself would not heat because there would be no local
dissipation within it but energy would be dissipated within a nearby part
of the device capacitively coupled to it. This effect has been evidenced
in carbon nanotubes in the ballistic regime [Baloch et al., 2012].

Modeling Joule heating in quantum conductors therefore requires
to take into account both mechanisms. This section is organized as
follows: a simple model for Joule heating that encapsulates both aspects
is introduced in section 4.4.1. The probability density function (p.d.f.)
for dissipated heat is obtained in full generality. We shall also present the
ν = 2 edge channel system as a simple illustration of our general model
used to discuss our results. The case of time-dependent current pulses
generated by a classical drive will be discussed in section 4.4.2, starting
first by a simple a.c. drive and moving forward to Lorentzian current
pulses which in particular, involve the Leviton excitation. Section 4.4.3
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CalorimeterQ = ∆ECalorimeter

Interacting region

Source

Electronic
channel

Figure 4.6: An electronic source emits electronic excitations into an edge
channel coupled to environmental degrees of freedom with an interaction
region. One measures the energy change of the environmental degrees
of freedom through single-shot calorimetry. The interaction region is
described by an elastic scattering matrix between edge magnetoplasmons
and environmental modes. Electrons cannot tunnel from the edge channel
to the environment.

then discusses the p.d.f. of the heat generated by an arbitrary single-
electron excitation.

4.4.1 Scattering theory approach to the Joule heating

We consider a simple model for Joule heating involving one chiral elec-
tronic 1D edge channel coupled to environmental modes represented as
incoming and outgoing harmonic channels (see fig. 4.6). The edge chan-
nel interacts with the environmental modes within and interaction region
of finite size l and a linear coupling is assumed between the environmen-
tal modes and the edge-channel edge magnetoplasmons as in chapter 3.

Part of the energy injected by the electronic source will then be
transfered to these environmental modes which could be acoustic phonon
modes but also other linear modes corresponding to the electromagnetic
environment of the edge channels or, in the ν = 2 quantum Hall edge
channel system, edge-magnetoplasmon modes of the second edge channel.
As discussed in the previous chapter, the bosonization formalism provides
the proper framework for discussing the dynamics of such a system.

As stressed before, understanding Joule heating for a quantum con-
ductor also requires to understand the energy dissipated into the contact
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when the electronic flow reenters it. Dealing with quantum Hall edge
channels, the situation is different depending whether we are dealing
with a two-terminal or four-terminal geometry (see figs. 4.7 and 4.8).

VS(t)

Qc

Q
i(t)

QR

0

Figure 4.7: Four-terminal geometry. The quantum electronic source is
decomposed into a driven Ohmic contact generating the average time-
dependent current 〈i(t)〉ρS and a quantum device Q generating the non-
trivial quantum fluctuations of the current at all order that characterize
the edge-magnetoplasmon state ρS . The finite-frequency average current
〈i(ω)〉ρS entering the interaction region is linearly related to the drive
VS(t) by 〈i(ω)〉ρS = (e2/h)VS(ω). When considering classical sources,
the quantum device Q is not present. Each outgoing modes reenter a
contact at equilibrium at the same temperature and chemical potential.

The simplest case is the one of the four-terminal geometry: the elec-
tronic source sends excitations onto an elastic frequency-dependent beam
splitter which partitions the incoming flow of edge magnetoplasmons into
an outgoing channel and environmental channels. The energy of these
outgoing edge magnetoplasmons is then dissipated into the contact.

The case of the two-terminal geometry (see fig. 4.8) is more subtle
since, in the a.c. Joule heating, the contact is itself driven by a time-
dependent potential VS(t). Therefore, the electrons entering the Ohmic
contact see a time-dependent electric field. Thinking in classical terms,
this electric field will perform work on the incoming current flow and
that makes the energy balance at the contact more subtle: due to the
time-dependent electric field, only part of the incoming energy will be
transfered to the phonon modes into the contact.

Describing the dissipation within a driven Ohmic contact seems to
be a highly non-trivial problem. However, in this case, gauge invariance
provides us a way to bypass a microscopic modeling of dissipation within
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the driven contact. Dissipation within the contact being local, a gauge
transformation can be applied to neutralize the time-dependent potential
of the contact locally. Such a gauge transformation acts on the many-
body state entering the contact as a many-body unitary transformation4.
Since the physics is locally gauge invariant, we just have to study energy
dissipation for the corresponding gauge-transformed many-body state
into an undriven contact which, in principle, could be done.

The natural and crucial question is now to extend this line of reasoning
beyond the case of a simple a.c. drive, for example, to the case of a
quantum electron flow generated by the mesoscopic capacitor in the
ideal single-electron source regime [Fève et al., 2007]. It requires a
careful understanding of a quantum electronic source in terms of edge
magnetoplasmons. For simplicity, we shall assume that the source does
not change the chemical potential (no d.c. bias) so that it really emits
edge magnetoplasmons on top of the reference Fermi sea |Fµ=0〉. Such a
source generates a time-dependent current 〈i(t)〉S whose time average
is zero. A time-dependent voltage drive VS(t) = RK〈i(t)〉S reproduces
the same average current but not its higher moments. This is the main
difficulty and, it seems difficult to imagine that the Ohmic contact is
driven in a quantum way.

This is where our theorist ansatz comes into play. It is conceptu-
ally natural to represent an arbitrary electronic source as a two-stage
device composed, first, of a time-dependent voltage drive VS(t) which
generates a classical edge-magnetoplasmon state carrying the average
current 〈i(t)〉S and second of a quantum device generating all the non
trivial higher order momenta while keeping the same average current.
This fictitious arrangement depicted on fig. 4.8 enables us to discuss the
heat dissipated within the contact in the presence of an arbitrary quan-
tum electronic source such as the mesoscopic capacitor while keeping the
dipole arrangement by giving a clear prescription on the partitioning of
the reentering energy flow between work and heat.

Note that, even for a classical current, the work is brought through
the transmission line driving the contact. It makes no sense to study its
probability since a classical drive VS(t) generates a coherent state which
is a quantum state with coherences between eigen-energy states of the
electromagnetic field.

4. In the edge-magnetoplasmon language, it is nothing but a displacement operator
for all the edge-magnetoplasmon modes corresponding to the time-dependent potential
−eV (t).
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VS(t)

Qc

Q
i(t) 0

QR

Figure 4.8: Two-terminal geometry: The effective RC circuit obtained
from the setup depicted in fig. 4.6. The quantum electronic source is
decomposed into a driven Ohmic contact generating the average time-
dependent current 〈i(t)〉ρS and a quantum device Q generating the non-
trivial quantum fluctuations of the current at all order that characterize
the edge-magnetoplasmon state ρS . The finite-frequency average current
〈i(ω)〉ρS entering the interaction region is linearly related to the drive
VS(t) by 〈i(ω)〉ρS = (e2/h)VS(ω). When considering classical sources,
the quantum device Q is not present.

The quantum device Q depicted on fig. 4.8 plays a crucial role in
generating the single-electron excitation. It is an active device which
is also driven in a coherent way. Note that for the LPA source, what
would play the role of Q would be the mesoscopic capacitor preceded
by a capacitive coupling to another transmission line whose purpose is
to displace back the edge-magnetoplasmon coherent state with average
current 〈i(t)〉S onto the edge-magnetoplasmon vacuum state.

Dissipated heat

Let us now obtain general expressions for the generating functions for
the p.d.f. of the heat dissipated in the external environment (extrinsic
dissipation) and for the heat dissipated into the contact (contact dissipa-
tion). We shall first start with the heat dissipated into the environment
since it could be accessed experimentally by a calorimetric measurement
of the environmental channels and we will then discuss the generating
function for both the dissipated heat into the environment and into the
contact.
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Extrinsic dissipation Heat dissipated into the environment corre-
sponds to the energy change of the environmental modes: the incoming
modes are prepared in a thermal state at temperature TR which is a
statistical mixture of the reservoir eigenstates |Ni〉 indexed by their oc-
cupation numbers Ni = (Ni(µ, ω))µ,ω where µ labels the environmental
channels at frequency ω. The extrinsic heat QR is thus defined as the
energy change of the environmental modes, in a scattering theory version
of the two-time measurement [Esposito et al., 2009]: it is the differ-
ence of the incoming and outgoing energies of the environmental modes
∆ER = E[Nf ]−E[Nf ] where E[N ] =

∑
µ,ω ~ωN(µ, ω). In the following,

we shall denote by HR the Hamiltonian for the environmental modes
which is expressed in term of the creation and destruction operators as:

HR =
∑
µ,ω

~ω aµ(ω)†aµ(ω). (4.47)

Contact dissipation Let us now turn to the energy dissipated within
the contact. In the dipole representation of the system depicted on
fig. 4.8, the outgoing excitations of the edge channel are sent back into
the contact driven by the time-dependent voltage VS(t) which depends
on the characteristics of the source. As explained before, heat dissipation
within a driven contact is identical to heat dissipation within an undriven
contact from a many-body state ρ′back obtained by applying the gauge
transformation neutralizing the applied potential VS(t). This gauge
transformation is described by a displacement operator of parameter
ΛS(ω) = 〈i(ω)〉S/e

√
ω (ω > 0) where 〈i(ω)〉S denotes the finite-frequency

average current emitted by the source S.
For an edge channel at zero temperature, the dissipated heat Qc

corresponds to the result of an energy measurement on the plasmonic
many-body state ρ′back. This edge-magnetoplasmon energy operator is
H0 =

∑
ω ~ωb†out(ω)bout(ω) where the bout operators correspond to the

outgoing edge-magnetoplasmon modes with respect to the interaction
region.

Dissipated heat characteristic function

We can now compute the generating function for the p.d.f. for the extrinsic
heat QR and the heat Qc dissipated within the contact as defined in
the previous paragraphs. Because of their definitions from two-point
measurements of the HR and H0 operators, the generating function is
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expressed in terms of the incoming state ρS of the edge channel and of S
the scattering operator acting on the full Hilbert space of all many-body
states of the system:

P (λc, λR|ρS , TR) = tr

(
ei(λRHR+λcHe)/2Db[ΛS ] S[
ρS ⊗ e−HR(βR−iλR)

ZβR

]

S†Db[−ΛS ] ei(λRHR+λcHe)/2

)
,

(4.48)

where, in this expression ZβR
denotes the partition function of the

reservoir at temperature kBTR = 1/βR. Note that the incoming many-
body state in the edge channel also appears via ΛS which is related to
the average current generated by the electronic source.

Ignoring what happens within the contact corresponds to λc = 0 and
gives the generating function for the p.d.f. of the heat QR exchanged
from the edge channel to the environment.

The next step is to rewrite the expression in a suitable way al-
lowing the evaluation of P̂ (λc, λR|ρS , TR) and the corresponding p.d.f.
P (Qc, QR|ρS , TR) for physically relevant states in the context of quantum
coherent nanoelectronics. A first class of states is obtained by considering
that the edge channel is driven by a classical voltage drive, in which
case, ρS is a displaced state of the edge-magnetoplasmon modes. This
corresponds to the usual a.c. Joule heating.

Another important class of states are the ones generated by an ideal
single-electron source. As explained in chapter 3, they are described
as quantum superpositions of coherent states of edge magnetoplasmons.
More generally, eq. (4.48) could be used to discuss any superposition of
coherent edge-magnetoplasmon states and thereby an arbitrary n-electron
state (Slater determinant) of electronic excitations on top of the Fermi
sea. These considerations strongly suggest to use a coherent state rep-
resentation for both the edge magnetoplasmons and the environmental
modes in order to rewrite P̂ (λc, λR|ρS , TR) under a suitable form for
explicit computations as well as physical discussion.
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Zero temperature expressions

When both the edge channel and the environment are at zero temperature,
eq. (4.48) can be simplified using the unitarity of the scattering matrix
S as well as the commutation relations of the many-body scattering
matrix with the displacement operators. This leads to a more compact
expression for the characteristic function of the p.d.f. of Qc and QR:

P̂ (λc, λR|ρS) =
∫

dy+ dy− ρS(y+, y−)〈Λ(y−)|Λ(y+)〉

× exp
(
(r · Λ(y−))†(ei~ωλR − 1) (r · Λ(y+))

)
× exp

(
(t · Λ(y−)− ΛS)

∗(ei~ωλc − 1)(t · Λ(y+)− ΛS)
)
.

(4.49)

This expression shows that, at zero temperature, energy can only flow
into the environment and into the contact since only positive powers of
ei~ωλc and ei~ωλR appear. Note that, the generating functional for the
p.d.f. of the total dissipated heat is found by considering λR = λc = λ.

Expression (4.49) contains all the information on the p.d.f. of Qc and
QR under a form that makes it quite simple to understand separately
the role of the average current, of current fluctuations and of higher
moments. To explore these issues, we shall first consider Joule heating
from current voltage pulses generated by a classical drive (the usual a.c.
Joule heating) before moving to the case of single-electron states.

4.4.2 Joule heating from current pulses

Let us now discuss the Joule heating in the case of current pulses gener-
ated by a voltage pulse. At zero temperature, these correspond to the
edge-magnetoplasmon coherent states. We first obtain in full generality
the joint p.d.f. for the heat dissipated into the environment and into the
contact and show that it factorises due to the absence of correlations
generated by the interaction region in the case of current pulses. We
show that the average dissipated energy is given by the standard a.c.
Joule heating expression. We then discuss more specifically the case of
an a.c. drive at a given frequency and also the case of a Lorentzian pulse
of given duration τ0 and charge q. Discussing the case of the ν = 2 edge
channel system, we show how fractionalization of Levitov pulses leads to
striking signature on the p.d.f. of QR and Qc.



4.4.2 JOULE HEATING IN QUANTUM CONDUCTORS 239

General current pulses

A time-dependent voltage Vd(t) generates a coherent state |ΛVd
〉 where

the functionnal parameter is given by ΛVd
(ω) = −eṼd(ω)/h

√
ω. In this

case, the interaction region does not lead to any entanglement between
the edge channel and the environmental degrees of freedom. Therefore,
there are no correlations between the heat dissipated in the environment
and the heat dissipated in the electronic reservoir. More specifically, the
generating function P̂ (λc, λR) factorises as:

P̂ (λc, λR) = P̂r·ΛVd
(λR)× P̂(t−1)·ΛVd

(λc), (4.50)

where P̂Λ(λ) denotes the generating function for the energy p.d.f. of a
coherent state |Λ〉

P̂Λ(λ) = exp
(∫ +∞

0
|Λω|2(ei~ωλ − 1)dω

)
. (4.51)

The generating function given by eq. (4.51) being an exponential of
a sum, it can be understood as the generating function of an infinite
convolution of all the p.d.f. associated with each mode. Since we have
a tensor product of coherent states in each frequency mode, we obtain
an infinite convolution of Poisson laws corresponding to all the coherent
states at all possible frequencies.

Here, the two terms in eq. (4.50) correspond to the many-body
state of the environmental degrees of freedom: r · Λ and of the state
of the electron/hole pairs carrying the heat to be dissipated in the
contact |(t − 1) · Λ〉. We then have to use eq. (4.51) with |r · Vd|2ω =
(e/h)2R(ω)|Ṽd(ω)|2/ω and |(1− t) · Vd|2ω = (e/h)2 |(1− t(ω))Ṽd(ω)|2/ω.

Average dissipated heat Let us first show that the classical Joule
heating expression is recovered. From the effective circuit perspective,
the average energy dissipated is ĒJoule =

∫
〈I(t)〉Vd(t)dω. Going to the

frequency domain, the heat dissipated by Joule heating is:

ĒJoule =

∫ +∞

−∞
<(G(ω)) |Ṽd(ω)|2

dω
2π
, (4.52)

where G(ω) denotes the finite-frequency admittance of the circuit. In
our model, the average heat dissipated in the environment is given by:

Q̄R =
e2

h

∫ +∞

0
R(ω) |Ṽd(ω)|2

dω
2π
, (4.53)
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but we also have to account for the heat dissipated in the contact
when an incoming edge-magnetoplasmon coherent state of parameter
Λ0,out(ω) = t(ω)ΛVd

(ω) is sent into an electronic reservoir driven by the
voltage Vd(t). Using a gauge transformation, this is equivalent to the heat
dissipated when a coherent edge-magnetoplasmon state of parameter
(t(ω)− 1)ΛVd

(ω) is dissipated in an electronic reservoir at fixed chemical
potential µ = 0. The average dissipated heat is then given by:

Q̄e =
e2

h

∫ +∞

0
|t(ω)− 1|2 |Ṽd(ω)|2

dω
2π
. (4.54)

Summing eqs. (4.53) and (4.54), and defining t(−ω) = t(ω)∗ for ω > 0
gives the total average dissipated heat

Q̄tot =
e2

h

∫ +∞

−∞
<(1− t(ω)) |Ṽd(ω)|2

dω
2π
, (4.55)

which, using the relation RKG(ω) = 1 − t(ω) coincides with the Joule
expression given by eq. (4.52).

Example of a.c. Joule heating

To illustrate the above analysis in a more familiar case, let us consider
the case of a monochromatic a.c. drive at frequency f = ω0/2π: VS(t) =
V0 cos (ω0t+ ϕ) and let us assume that it is applied during the time
interval [−T/2, T/2]. Then, for ω > 0, the Fourier transform ṼS(ω) is
given by:

ṼS(ω) =
V0T

2
eiϕ sinc

(
(ω − ω0)T

2

)
. (4.56)

Using this expression to compute P̂ (λ) shows that

P̂ (λc, λR) = en̄ac
(
R(ω0) (eiλR~ω0−1)+|1−t(ω0)|2(eiλc~ω0−1)

)
, (4.57)

where we denote
n̄ac =

T

4

e2

h
V 2
0 × (~ω0)

−1. (4.58)

Equation (4.57) is the characteristic function of the product of two Pois-
son distributions for the variables Qc/~ω0 and QR/~ω0 with respective
average values n̄ac,c and n̄ac,R given by:

n̄ac,R = R(ω0) n̄ac (4.59a)
n̄ac,c = |1− t(ω0)|2 n̄ac. (4.59b)
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The energy is dissipated under the form of individual quantum of energy
~ω0 as expected from the photo-assisted noise theory. The statistics for
the number of emitted quanta are Poissonian with averages given by
eq. (4.59). The p.d.f. for the total dissipated heat Q = Qc +QR is also
Poissonnian for the discrete variable Q/~ω0 and the average dissipated
energy is given by

Q̄ =
T

2

e2

h
V 2
0 <(1− t(ω0)), (4.60)

and therefore grows linearly with time. The corresponding average power
coincides with the classical a.c. Joule heating expression.

Lorentzian pulses

Applying a Lorentzian voltage pulse to an Ohmic contact generates a
Lorentzian current pulse characterized by its duration τ0 and its charge
q. When q is a positive integer mutiple of the electronic charge −e
corresponds to an electronic many-body state built from the Fermi sea
by adding on top of it a Slater determinant of n mutually orthogonal
single-electron states, as previously discussed in sections 1.2.3, 1.4.4
and 3.3.4. For non-integer values of q/e, the many-body state involves
both electronic and hole excitations. These states are therefore very
convenient to explore Joule heating for quasi-classical currents involving
an increasing number of electronic excitations and, at the same time,
admitting a clean single-electron limit (the Leviton).

Besides their charge, Lorentzian pulses are characterized by their du-
ration τ0. In the ν = 2 edge channel system with short-range interactions
discussed in section 3.4.3, the fate of a Lorentzian pulse depends on the
ratio of τ0 to the characteristic time of flight τs(l) = l/vs within the inter-
action region. Two distinct regimes can be probed: when τ0 � τs(l), the
current pulse is much wider than the interaction region which then sees
a slowly varying homogeneous charge. Charge/neutral mode separation
discussed in section 3.4.3 then appears as a small perturbation compared
to the very broad shape of the pulse and, as we shall see, interactions
can be considered as a weak disturbance acting on the pulse.

On the other hand, in the opposite limit where τ0 � τs(l), this ap-
proximation breaks down and the Lorentzian pulse comes out fully frac-
tionalized from the interaction region. As we shall see, fractionalization
which is specific to the interaction model considered in section 3.4.3 has
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Figure 4.9: Regular part of the p.d.f. Pl(Q|q, θ) when fractionalization
is not completed (τ0 ∼ τs(l)) for θ = π/2 and various values of the
charge (q/(−e) = 1,

√
2, 2, 3). The shape of the curve is qualitatively

the same for different charges. Increasing the charge also increases
the probability of heat emissions, scaling the curves towards higher
probabilities. Furthermore, we observe a slight shift of the most probable
heat value towards higher energies as we increase the charge, for this
regular contribution.

drastic consequences on the heat p.d.f. which indeed is deeply related to
the energy content of Lorentzian pulses.

Small impedance regime This regime is characterized by τs(l) � τ0
which implies that the incoming pulse is weakly distorted by its passing
across the interaction region. In this regime, the frequencies involved
in the Lorentzian pulse are such that the coupling to the environment
is weak: R(ω) = sin2(ωl/2vs(l)) � 1 at θ = π/2. At a given frequency,
we are thus probing the energy content of the Lorentzian pulse. This
explains why all the curves on fig. 4.9 have the same shape and moreover,
a scaling in the square of the amplitude of the pulse is expected.

Fully-fractionalized regime Let us now turn to the τs(l) � τ0. As
noticed, the electronic pulse is fully fractionalized when it comes out of
the interaction region. In the energy domain, the edge magnetoplasmon
reflexion probability amplitude R(ω, l) oscillates rapidly over the typical
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energy scale associated with the Leviton (~/2τ0). Going deeper into
the τs(l) � τ0 regime thus leads to an equipartition of the energy of
edge-magnetoplasmon eigenmodes between the two edges, as observed in
relaxation experiments in quantum Hall edge channels [Grenier et al.,
2011a; Le Sueur et al., 2010].

We thus expect that the p.d.f. of the dissipated heat into the environ-
mental channel slowly reaches a limiting regime, at least for |Q| � ~vS/l.
Numerical computations presented on fig. 4.10 precisely show that, in
the limit l → +∞, the p.d.f. converges towards a limiting distribution.
Replacing R(ω, l) by its coarse grained value R∞(θ) = sin2 (θ)/2 shows
that this limiting prediction is given by (γq,θ = q2 sin2 (θ)/2):

P∞(Q |q, τ0) =
1

~/2τ0
Pγq,θ

(
Q

(~/2τ0)

)
, (4.61)

where Pγ(x) is the Gamma law defined by:

Pγ(x) =
H(x)

Γ(γ)
xγ−1 e−x. (4.62)

First of all, the Q = 0 elastic peak has disappeared meaning that energy
has been released into the environment. Next, eqs. (4.61) and (4.62)
show that P∞(Q |q, τ0) exhibits infrared divergences when Q → 0 for
q2 sin2 (θ)/2 < 1. This qualitative change in the p.d.f. can indeed be
understood as a signature of the fractionalization of the pulse into
two Lorentzian pulses, one of which having a charge smaller than the
electronic charge. More precisely, the probability distribution function
of the energy for Lorentzian current pulse carrying an electric charge
q > 0 is also given by a Gamma law Pγ with γ = q2. Therefore,
it exhibits infrared divergences, which reflects the fact that fractional
Lorentzian pulses of sub-electronic charge (|q| < e) have an important
low-energy electron/hole pair content compared to higher non-integer
charge Lorentzian pulse which can be viewed as subelectronic pulses on
top of a charge nq = bq/(−e)c Leviton. Coming back to our Joule heating
setup, an incoming Lorentzian pulse of charge q comes out fractionalized
from the interaction region. In the environmental edge channel, it comes
out as two Lorentzian pulses of respective charges [Grenier et al., 2013]
−q sin2 (θ/2) and q cos2 (θ/2) and the infrared divergence in the p.d.f. of
Q appears when one of these two charges becomes smaller than one.
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Figure 4.10: Case τ0 � τprop(l): fractionalization completed; the p.d.f.
Pl(Q|q, τO) converges towards a universal Gamma law with exponent
q2 sin2 (θ)/2 in the limit l → +∞. Sub-electronic remnant pulses lead to
IR divergences in Pl→+∞(Q|q, τ0).

4.4.3 Joule heating from single-electron excitations

Here we shall consider the p.d.f. for the energy dissipated in the envi-
ronment. At zero temperature, this is obtained by setting λc = 0 in
eq. (4.49). Denoting λR = λ here, the resulting expression can be re-
casted in terms of the extrinsic decoherence coefficient as:

P̂ (λ|ϕe) =

∫
ϕe(x+)ϕ

∗
e(x−)

〈
ψ(x−)ψ

†(x+)
〉
F

× Dext(x+ − x− − vFλ)

Dext(x+ − x−)
dx+ dx−,

(4.63)

where Dext(x+ − x−) denotes the extrinsic decoherence at zero temper-
ature given by eq. (3.63). Going into Fourier space and using the well
known behavior of Dext(z), the p.d.f. from dissipated heat can be re-
casted in an explicit form. The final result is of the form:

P (Q|ϕe) =

∫ +∞

0
P (Q|k0) |ϕe(k0)|2

dk0
2π

, (4.64)

showing that it is an incoherent sum of probability distributions corre-
sponding to single-electron excitations of initial energy ε0 = ~vFk0.
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First of all, as noticed before, energy can only flow from the edge
channel into the environment and therefore P (Q < 0) = 0. We then find
two contributions:

P (Q|ε0) = δ(Q)Zext(ε0) (4.65a)

+ d+

(
−Q
~vF

)
Zext(ε0 −Q). (4.65b)

The singular contribution given by eq. (4.65a) corresponds to trajectories
in which no energy is dissipated into the environment. The corresponding
probability Zext(ε0) for an incoming electron of fixed energy ε0 is given by:

Zext(ε0) = 1 +

∫ 0

−Q/~vF
d−(p)dp. (4.66)

where the d±(q) functions are defined from the following integral equa-
tions

± kd±(k) = R(−kvF ) +
∫
d±(k + q)R(qvF )dq (4.67)

and thus obey the relation

d+ + d− + d+ ? d− = 0. (4.68)

It should be noted that Zext(ε0) does not coincide with the total elastic
scattering probability function Z(ε0) appearing in the electronic deco-
herence of such a single-electron excitation [Degiovanni et al., 2009].
For example, if the edge channel was totally isolated from the outside,
Zext(ε0) = 1 (R(ω) = 0 for all ω > 0) whereas Z(ε0 > 0) < 1 as soon as
t(ω) does not correspond to an energy-independent Wigner–Smith time
delay t(ω) = e−iωτ .

The regular contribution given by eq. (4.65b) corresponds to trajecto-
ries involving dissipation of an energy Q into the environment. Remark-
ably, their contribution to P (Q|ε0) comes as the product of a function
of Q multiplied by the probability of not emitting energy from the en-
ergy ε0 −Q > 0. The function d+(−Q/~vF ) can then be interpreted as
the emission probability of radiating energy Q into the environment but
it should be kept in mind that its expression is given by the solution
of the integral equation (4.67), and therefore all orders in R(ω) which
represents the coupling to the environmental modes.

The average heat radiated by a single-electron excitation of energy
~ωe is then obtained as:

〈Q〉ωe = ~
∫ ωe

0
R(ω)dω, (4.69)
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which is consistent with the energy spectrum of the edge magnetoplas-
mons involved in such an excitation, since for such a single-electron
excitation, a direct computation shows that the energy spectrum of the
edge magnetoplasmons is given by (ω > 0):

~ω〈(b†b)(ω)〉ωe = H(ωe − ω). (4.70)

In the same way, the fluctuation is obtained as:

〈Q2〉ωe = ~2
∫ ωe

0
ωR(ω)dω (4.71a)

+ ~2
∫ ωe

0
(R ? R)(ω)dω, (4.71b)

where (R ? R) denotes the self convolution of the reflexion probability.
In the expression, the first term (4.71a) comes from the Poissonian shot
noise associated with partitioning of the edge magnetoplasmons in the
interaction region whereas the second term (4.71b) reflects their wave
nature.

At low energy, dissipation is weak because

R(ω) ' 2R

RK
(RKCµω)

2 +O((RKCµω)
4), (4.72)

where R = Rq − RK/2 denotes the environment contribution to the
relaxation resistance Rq of the effective discrete-element circuit depicted
on fig. 4.8 and Cµ denotes its electrochemical capacitance. It follows that

Zext(ω) ' 1− 2R

RK
(RKCµω)

2. (4.73)

At this order, Zext(ω) coincides with the total elastic scattering probabil-
ity, as expected since in the low-energy limit, electron–hole pair creation
is expected to be a subdominant process [Grenier et al., 2011b]. The
regular part of the heat p.d.f. then follows, since in the perturbative
limit, d+(−k) ' −dZext(k)

dk . At lowest order, the regular part of the p.d.f.
is thus linear and only depends on the universal parameters R and Cµ of
the circuit:

Preg(Q) ' 2R

RK

RKCµ

~
(~−1RKCµQ). (4.74)
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Numerical results

We will now discuss the result for the short-range model at ν = 2. Since
the heat probability distribution for any incoming wavepacket is given by
the convolution between the heat probability distribution for an electron
at a given energy and the energy distribution of the electron, we will be
interested by the heat dissipated in the undriven Ohmic contact, when
we inject a single electron at a given energy ε0 in the other contact.

First, let us present the results in the weak coupling case, when
θ = π/10 (see fig. 4.11). In this case, we see that Zext decreases slowly
as we increase the energy of the incoming wavepacket. The regular
part of the distribution Preg(Q), is non-zero when Q ∈ [0; ε0]. This
follows simply from the conservation of energy, because allowing heat
emissions above ε0 would amount to gain energy between initial and final
situations. Furthermore, we can see that all the curves possess almost
the same shape on their support. Actually, it turns out that first-order
perturbation theory, in which only one plasmon is exchanged between the
incoming single-electron excitation and the environment is an appropriate
description in this case. In the weak coupling regime, increasing the
energy of the incoming electron amounts to explore the same physics, over
a greater energy range. Furthermore, we see that first-order perturbation
theory leads to vanishing probabilities at Qτs(l)/h = 1. This is due to
destructive interferences in the spin-charge separation model.

The strong coupling (θ = π/2) possesses very different features
(see fig. 4.12). First, Zext decreases much faster as ε0 increases. This is
expected since a stronger coupling means higher dissipation. Furthermore,
its behavior is far from monotonic, showing once again the resonances of
the spin-charge separation model. Like in the weak coupling case, the
regular part of the probability distribution has a support [0, ε0]. However,
in the strong coupling case, the curves are qualitatively different for two
different energies ε0. This amounts to multiplasmonic processes, which
makes the physics richer in this case.

4.4.4 And next...

The next step would be to compute the p.d.f. of the total heat dissipated
in the four-terminal geometry and in the two-terminal geometry.

Unfortunately, we have run into difficulties when considering the
case of two-terminal geometry. For simplicity we have considered the
zero-temperature case but even then, the situation proved to be quite



248 ENERGY FLOWS IN QUANTUM MESOSCOPIC SYSTEM 4.4.4

0.00

0.01

0.02

0.03

0 1 2 5 10
Qτprop/~

P
(Q
τ p

ro
p
/
~)

ε0 = 1

ε0 = 2

ε0 = 5

ε0 = 10
first order
perturbation

0.00

0.25

0.50

0.75

1.00

0 1 2 5 10
ε0τprop/~

Z
e
x
t

Zext

first order
perturbation

Weak coupling (θ = π/10)

Figure 4.11: Probability of heat for a single-electron excitation at a given
energy ε0 in the weak coupling case (θ = π/10). Right pannel: the regular
part of the full probability distribution for different ε0τs(l)/~ = 1, 2, 5, 10.
Each curve is appropriately described by the first-order perturbation
theory, represented as a dashed line, up to Q = ε0. For Q > ε0 the
probability of further emission is zero. We can also see strong resonances
at Qτs(l)/~ = 2π. Left pannel: probability of no heat emission in the
environment, plotted as a function of the incoming wavepacket energy.
This probability decreases slowly as ε0 increases. This agrees extremely
well with first-order perturbation theory (dashed line).

involved. The natural procedure would be to start from the explicit
expression for P (λc, λR|ρS , TR = 0) and express it in terms of simpler
blocks, in the same spirit as we did for the computation of single-electron
decoherence (see chapter 3). Unfortunately we didn’t succeed: the
analytical expression that we have obtained proved to be numerically
inappropriate. The main reason was, as far as we understood, a bad
understanding of its singularities...

Because we were running out of time, we then decided to set the
problem aside and elaborate on other topics which indeed gave birth to
the quantum signal processing approach to electron quantum optics and
thus the results presented in chapter 2. I hope to reconsider this problem
in the future.

On the scientific side, the partial results presented here already point
at the possibility of differentiating some characteristics of the many-body
state by looking at the p.d.f. of dissipated heat in the environment.
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Figure 4.12: Probability of heat for a single-electron excitation at a given
energy ε0 in the strong coupling case (θ = π/2). Right pannel: the regular
part of the full probability distribution for different ε0τs(l)/~ = 1, 2, 5, 10.
Each curve stops at Q = ε0, probability being zero afterwards. Curves
show very different behaviors, due to multiphotonic processes. Left
pannel: probability of no heat emission in the environment, plotted
as a function of the incoming wavepacket energy. Compared to the
weak coupling case (fig. 4.11), the probability of having no emission
decreases very quickly as ε0 increases. We can also see resonances due to
the spin-charge separation model.

The two extreme examples considered here which are the Leviton and
the energy-resolved excitations already show spectacular difference. In
the case of a single-electron excitation, we are probing the energy p.d.f.
of the incoming electronic excitation. In the weak coupling regime, it
might even be possible to reconstruct it from the p.d.f. It would be even
more interesting to compare these results to the ones we could obtain for
an already partially decohered superposition of edge-magnetoplasmon
coherent state, which is what would appear if there was a second envi-
ronment between the one in which the energy change is measured and
the electronic source. This remains to be done but it will surely bring
interesting insights.

Last but not least, even the four-terminal case is interesting since it is
a quantum optics version of a problem considered in our lab by Ciliberto
et al. [2013].
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Chapter 5

Conclusion and
perspectives

5.1 General conclusions

During my PhD, I have explored the concept of quantum signal processing
in the context of electron quantum optics. As of now, I am not sure
quantum signal processing can be described in its final form. Even its
name is ambiguous since one can understand it as processing of quantum
signals or as quantum processing of signals or maybe as signal processing
of something quantum... The contributions of the present thesis are
certainly not the end of the story but should rather be viewed as an
empirical attempt at understanding what quantum signal processing
could be in the spectific and concrete context of electron quantum optics.

By revisiting the interference experiments already performed in elec-
tron quantum optics, I have argued that the excess electronic coherences
at first and second order (and indeed at all orders) should be considered
as quantum signals characterizing the contents at a given order in the
number of particles. This reinterpretation of the ideal MZI, HOM and
Franson interferometery experiments showed that each of these interfer-
ometers could be interpreted as a quantum signal processor encoding
the result of simple operations on the quantum signals fed in its input
channels.

Having identified quantum signals such as the excess single-electron
coherence ∆G(e)

S and given a way to reconstruct them experimentally,
for example using HOM single-electron tomography, I have developed an
algorithm that can extract from a time-perodic ∆G(e)

S a representation

251
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in terms of electronic and hole atoms of signals. It contains a simple
description of the single-particle states emitted within each period, their
emission probabilities, as well as their interperiod coherences and also
electron/hole coherences. The whole chain combining on-chip quantum
signal processing (HOM tomography) and my classical algorithm can be
viewed as a single-particle autopsy of a quantum electrical current.

I have also presented a concrete case of such an autopsy that demon-
strates, for the first time, the extraction of individual wavefunctions
propagating within a ballistic quantum conductor.

In the case of a pure state generated from the Fermi sea by the
action of a T -periodic single-particle scattering, I have shown how the
algorithm extracts an entanglement spectrum between the electron and
hole excitations and can then be used to characterize the quality of a
potential single-electron source.

This new tool could also be used to analyse and supplement the
analysis of single-electron decoherence, a problem that I have contributed
to solve for arbitrary incoming single-electron excitations and effective
interactions, under the hypothesis of linear response to charge density
perturbations.

In its globality, this corpus of works to which I have contributed
demonstrates that the ideas and paradigm of quantum optics, when
interpreted in terms of quantum signal processing are very effective to
improve our understanding of electronic quantum transport and of the
effects of Coulomb interactions within ballistic conductors.

An important question, which I have started to address in the last
two chapters of this thesis is to try to characterize a quantum electrical
current in a more global way, that probes the many-body state at all
orders in the number of particles. For this, I have mainly explored
the radiation emitted by the current, first by starting to unravel the
relations beween photonic and electronic quantum coherences and then
by considering the full statistics of the dissipated energy. These works
are still in progress but my intuition is that this exploration will certainly
be useful in extending the general message I have just delivered.

5.2 Perspectives

I feel that electron quantum optics arrives now at a turning point. Having
entered the field five years ago, during my Master internship, I must
say that the development of the subject has been really impressive since
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then. Several milestones have been laid: the HBT and HOM experiment
[Bocquillon et al., 2012, 2013a], the demonstration of the Leviton source
Dubois et al. [2013a] and even the implementation of variants of the
single-electron tomography protocol proposed by Grenier et al. [2011a]
in specific cases Jullien et al. [2014].

These progresses make electron quantum optics an enabling platform
to probe many-body physics, as was also proved by the recent studies
of single-electron decoherence Marguerite et al. [2016b]. We are now to
the point where we can analyze quantum electrical currents at an un-
precedented level and I hope that the work presented here will contribute
exposing the richness of the situations we can now explore in electron
quantum optics.

Since important proofs of concept have been demonstrated, we are
now entering a different time where applications of electron quantum
optics can now be discussed, having in mind what is possible and what
has still to be done. This is why, in this section, I will try to elaborate
on the new possibilities for the field which are for a part, a natural
extension of this thesis. I will first discuss the foreseen applications of
electron quantum optics for the study of electronic correlations. Another
promising topic teased in this thesis is the connection between electron
and microwave quantum optics.

I believe that this thesis also opens perspectives beyond electron
quantum optics. In particular, quantum signal processing is not the
prerogative of electronic beams and the techniques we have described
could be extended to other particle quantum beams. More generally it
gives rise to the question of the many-body reconstruction from a set of
partial indicators. Finally, our work on heat transfer might be a way to
investigate some of the potential issues of quantum thermodynamics.

5.2.1 Applications of electron quantum optics

From the generation to the characterization of states at the single-particle
level, electron quantum optics now embeds everything needed to use it
as a powerful platform to probe electronic transport. A typical example
of forthcoming achievement would be the experimental reconstruction of
the Wigner function of a decohered single electron exactly as was done
for a single electromagnetic mode [Guerlin et al., 2007]. This exciting
example is, nonetheless, one of the many possible applications of electron
quantum optics. I will review a few of them here.

First of all, when extending the realm of applications of electron quan-
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tum optics, it might be necessary to mitigate or even control decoherence.
This is why, as mentioned in section 3.6.2, we are now exploring various
experimentally-relevant possibilities based on sample design. This will
notably be a part of the hopefully forthcoming thesis of C. Cabart.

Electron quantum optics could be useful to probe strongly interact-
ing systems, especially quantum impurity problems such as the Kondo
problem. For example, one could imagine probing the Kondo cloud by
sending single-electron excitations on it and measure the outgoing elec-
tron coherence. This would probably give new insight on the effect of
strong interactions and may provide a new proof of the vicinity of the
strong coupling point. This line of research would greatly benefit from
the recent progresses on the analysis of the spin-boson model describing
a simple two-level system coupled to a transmission line [Bera et al.,
2014b,a] and more recently, application of this approach to the Kondo
problem and quantum optics [Snyman and Florens, 2015; Bera et al.,
2016; Blunden-Codd et al., 2017; Gheeraert et al., 2017].

Fine control of decoherence as well as the development of efficient
quantum signal processing methods may also pave the way to the use
of electron quantum optics for metrology. Strong Coulomb interaction
effects may be used to probe local electrical or magnetic fields using
electron quantum optics probes and analysis of electronic coherence. This
is an idea currently discussed within electron quantum optics that is
still at the level of exploration. By contrast, these questions have been
dealt with great attention in the photon quantum optics community as
reviewed in [Giovannetti et al., 2011], and bears interesting connections
with quantum information [Pezzé and Smerzi, 2009].

Finally let me extend the list of potential applications by mentioning
two rather natural generalizations of electron quantum optics. Of course
some theory groups have already started to think about them [Ferraro
et al., 2017] but it is useful to recast some relevant questions here.

A first one would be to incorporate superconductivity into the game.
This would be a very important change, bringing non-zero pair correla-
tions. Electron quantum optics in presence of superconductors is thus
expected to be quite different from standard electron quantum optics.
The main difficulty on the experimental point of view here, is to have
both superconductivity and magnetic field. But there are recent hints
that it may be possible [Lee et al., 2017].

A second natural extension is to use electron quantum optics concepts
for probing the fractional quantum Hall regime. This might allow a
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better understanding of the structure of conducting channels. In this
case, the difficulty is twofold: on the experimental side, one would like
to probe Laughlin quasi-particles and this require making an energy-
independent Laughlin quasi-particle beam splitter, or at least a reasonable
approximation of it. This might be possible but in a limited range of
parameters, that is when a perturbative approach applies. On theory
side, what are the relevant quantum coherence concepts for these objects
and what are their properties?

5.2.2 Plasmon quantum optics

Plasmons are charge density wave of the electron fluid. The associated
electrical current couples to the electromagnetic fluid and, in the case of
1D chiral (but also non chiral) systems, they are central to understanding
the radiation emitted by a quantum electrical current. As explained
in section 3.3 of this thesis, connecting electron quantum optics to
microwave quantum optics goes through the study of “plasmon quantum
optics”. I have already sketched some relation between plasmon quantum
coherences and electronic coherences and this is something we intend
to pursue in the forthcoming months with a focus on relating the non-
classical features of the emitted radiation such as squeezing to electronic
coherences.

Besides this basic physics motivation, understanding the relation
between photon and electron coherences may lead to interesting applica-
tions. Electronic systems can be very non-linear and could be used to
generate or detect photon excitations. This was explored in section 3.3.4
of this thesis but there is surely more to explore. In particular, we can
also imagine using electronic non-linearities to engineer interesting hy-
brid electron-plasmon states. This is another way to look at decoherence
control by focusing on the interesting plasmonic properties which could
be generated in a controlled way.

5.2.3 Signal processing in electron quantum optics

Let me now sketch some perspective for the development of quantum
signal processing of quantum beams. Of course, the adaptation of the
ideas discussed in this thesis to photonic cases is certainly the most
promising, especially in the light of the developments of the manipulation
of multimode beams of light. In the same way, claryfying the relation
between the electronic atoms of signals present in a quantum electrical
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current and the ones suitable to describe the emitted radiation is certainly
worth spending some time. Here I will present a few perspectives that
are more specific to electron quantum optics.

Machine-learning based tomography

We are just at the beginning of using the single-electron tomography
protocol for applications such as probing decoherence effects for example.
A first step would be to try to improve the method by looking for a
suitable set of probes that minimizes the experimental work needed for
performing single-electron tomography. Although the generic protocol is
expected to be working, it may be more practical to use a different set of
probes. Then, the idea would be to optimize for the reconstructed electron
coherence by minimizing the distance between the expected HOM traces
computed from the reconstructed single-electron coherence and the set
of probes. One could do the minimization by adjusting the ∆W

(e)
n (ωk)

for a discretization of the energy space, or one could use Floquet–Bloch
decomposition and look for it using machine learning techniques.

It turns out that, during my PhD, several months before thinking
of the algorithm presented in chapter 2 of this thesis, I have designed a
machine-learning system able to look for the best single-electron wave-
function ϕe such that G(e)

++ = |ϕe〉 〈ϕe|. This system minimized the
distance between the given data G(e)

++ and the projector on |ϕe〉. One
could imagine to extend such a system to reconstruct a single-electron
coherence under the general form given by our algorithm starting from
the HOM curves associated with a different set of probes than the one
used in the generic algorithm.

Quantum signal processing for higher order coherences

A first question is the extension of the ideas of chapters 1 and 2 to higher-
order coherences. This would enable us, for example, to find two-electron
wavefunctions and the connection between these wavefunctions and their
single-electron counterpart.

The first step would be to design another tomography protocol for
the ∆G(2e) that would not rely on a Mach-Zenhder interferometer. We
already have started to explore a possible idea but this will be pursued
by C. Cabart and I will not elaborate more on this.

Concerning the signal-processing aspect, maybe the simplest thing
to do would be to proceed step by step. We could, for example, first try
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to use the Floquet–Bloch basis to express a Wick version of two-electron
coherence and then, consider the deviation from Wick’s expression for
the excess two-electron coherence in this basis.

Then of course, given such a deviation, a natural question would be
to guess some many-body ansatz that reproduces it on top of the many-
body state discussed in section 2.5.1. It is not clear to me at present
time how to implement this idea in practice.

5.2.4 Heat transport and quantum thermodynamics

Heat transport is, by far, the most exploratory topic discussed in this
thesis. The objective is to capture information on the many-body state
through the full statistics of an observable. Even if the observable is a
single-particle quantity (such as the charge or the energy current), its
fluctuations will involve two-particle correlations and the full statistics
will involve all electronic coherences that is all the information available
on the electronic many-body system.

We have first considered a general path-integral approach to heat
current full statistics. It is very general and we have explored only one
simple example that already shows its richness. Further exploration on
more complicated models, and also in the semi-classical regime will be
conducted to gain a more general, deeper understanding of the way the
statistics of heat transfer gives us information on the coherence properties
of the system.

We have then applied this approach to dissipation by a quantum
electrical current in a ballistic conductor, which is nothing but a theory
for Joule heating in the quantum regime. Our initial hope was to
compute the full statistics of the total dissipated heat, including the one
dissipated in the contacts but we have encountered technical difficulties
in the two-terminal geometry. Nevertheless, I hope to come back to this
problem since a preliminary study of the full statistics of heat dissipated
within the environment already points out nice physical effects such as a
qualitative change of the probability density function of the dissipated
heat as a signature of fractionalisation of Leviton pulses.

Of course, this is just the beginning of an exploration here but it
seems that electron quantum optics may lead to complementary and
interesting insight compared to traditional approaches to these problems
which are based on more usual quantum transport situations (d.c. regime)
[Tauber, 2015].

Finally, this approach touches to the emerging field of quantum
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thermodynamics. I haven’t elaborated any further on this since it is not
clear to me what quantum thermodynamics is. In the classical context,
the energy flows can always be accounted for and the first principle
expresses energy conservation. This nice image breaks down in the
quantum domain since the measurement itself perturbs the system. The
approach presented here is based on the availability of energy reservoirs
whose dynamics involves a strong decoherence mechanism enduring that
the reservoir is by definition incoherent in its eigenenergy basis. The
definition of the heat flow is therefore not a problem. But in the case
of an engine fed with a classical a.c. current, this no longer makes sense
since a classical a.c. current is precisely classical because of coherences
between Fock states of the quantum electromagnetic field (or equivalently
of quantum plasmonic modes).

A possibility would be to build quantum thermodynamics as a quan-
tum ressource theory as it has been done by Brandão et al. [2015] and
there is certainly something to understand in terms of quantum trajec-
tories here. Another one would be to try to generalize the connection
between algorithmic complexity and thermodynamics first unraveled by
Zurek and others [Zurek, 1989] to the quantum realm but this is far
beyond the scope of the present thesis.



Appendix A

Conventions

A.1 Wavepacket

We will use those normalization conventions for the wavepacket:∫
|ϕ(x)|2 dx = 1 (A.1)

vF

∫
|ϕ(t)|2 dt = 1 (A.2)

1

vF

∫
|ϕ(ω)|2 dω

2π
= 1 (A.3)

The change of basis is given by

ϕ(ω) = vF

∫
ϕ(t)eiωt dt (A.4)

In the case where one wavepacket is emitted, those conventions ensure

∆G(e)(ω1, ω2) = ϕ∗(ω2)ϕ(ω1) (A.5)

∆G(e)(t1, t2) = ϕ∗(t2)ϕ(t1) (A.6)

A.2 Fermionic operators

We have the normalization conventions for the ladder operators

{ψ(t), ψ†(t′)} = δ(t− t′)/vF (A.7)
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{c(ω), c†(ω′)} = δ(ω − ω′) (A.8)

This implies the following definition

c(ω) =

√
vF
2π

∫
ψ(t)eiωtdt (A.9)

c†[ϕe] =

√
2π

vF

∫
ϕe(ω)c

†(ω)
dω
2π

= vF

∫
ϕe(t)ψ(t)dt (A.10)

A.3 Single electron coherence operator
The single particle states |t〉 and |ω〉, normalized as

〈t|t′〉 = v−1
F δ(t− t′) (A.11a)

〈ω|ω′〉 = 2πvF δ(ω − ω′) (A.11b)

are related by

|t〉 = vF

∫
eiωt|ω〉 dω

2π
(A.12a)

|ω〉 = 1

vF

∫
e−iωt|t〉dt (A.12b)

Using eq. (2.13) and the expression of the fermion field operator

ψ(t) =

∫
R
c(ω) e−iωt dω√

2πvF
(A.13)

in terms of fermionic ladder operators c(ω), c†(ω), which obey the canon-
ical anticommutation relations {c(ω), c†(ω′)} = δ(ω − ω′), the G(e) oper-
ator is expressed in these two bases as

G(e) = v2F

∫
R2

|t+〉 G(e)(t+|t−)〈t−|dt+ dt− (A.14a)

=

∫
R2

|ω+〉 〈c†(ω−) c(ω+)〉ρ〈ω−|dω+ dω− . (A.14b)



Appendix B

Some remarks on Levitons

B.1 Classically driven two-electron excitations
In this section, we will show that the Leviton is the only plasmonic state
that carries an excitation containing exactly two electrons. We will use
here roughly the same technique used in chapter 3, with some refinements
necessary to treat the two-particle case. For this, we will first establish
expression for the general n-electron classical pulse that we will specialize
to the n = 2 case.

A n-electron state above the Fermi sea is described by a n-electron
wavefunction Φn(t1, . . . , tn). This wavefunction is anti-symmetric and
contains only positive frequencies. The state is given by

|Ψ〉 = Ψ†
n[Φn] |F 〉 = vnF

∫
Φn(t1, . . . , tn)ψ

†(t1) · · ·ψ†(tn)dt1 · · · dtn |F 〉 .
(B.1)

We can now use bosonization formulae to express the bosonic state
as a superposition of coherent states:

|Ψ〉 =
(
U †
)n( vF√

2πa

)n ∫
Φn(t1, . . . , tn)D[Λt1 ] · · · D[Λtn ]dt1 · · · dtn |0〉

(B.2)
We can reorganize terms according to normal bosonic ordering using

D[Λ1] · · · D[Λn] = exp

(
−1

2

n∑
i=1

∫ ∞

0
|Λi|2 dω

)

× exp

−
∑
i<j

Λ∗
iΛj

 :D

[
n∑

i=1

Λi

]
: .

(B.3)
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And we get

|Ψ〉 =
(
U †
)n( vF√

2πa

)n

exp
(
−n

2

2

∫ ∞

0

dω
ω

)
(B.4a)

×
∫

exp

∑
i<j

∫ ∞

0

(
1− eiω(tj−ti)

) dω
ω

Φn(t1, . . . , tn) (B.4b)

exp

(∫ ∞

0

(
n∑

i=1

eiωti
√
ω

)
b†(ω)dω

)
dt1 · · · dtn |0〉 (B.4c)

Using the UV regularization on the factor

exp

∑
i<j

∫ ∞

0

(
1− eiω(tj−ti)

) dω
ω

 = i(tj − ti)/(a/vF ) (B.5)

we obtain

|Ψ〉 =
(
U †
)n√vF

a

n2√
vF
2π

n

exp
(
−n

2

2

∫ ∞

0

dω
ω

)
(B.6a)

×
∫ ∏

i<j

(itj − iti)Φn(t1, . . . , tn) (B.6b)

exp

(∫ ∞

0

(
n∑

i=1

eiωti
√
ω

)
b†(ω)dω

)
dt1 · · · dtn |0〉 (B.6c)

On the other hand, |Ψ〉 being issued from a classical current containing
n electrons, we have

|Ψ〉 =
(
U †
)n

exp
(
−1

2

∫ ∞

0
|ie,V (ω)|2

dω
ω

)
× exp

(∫ ∞

0

ie,V (ω)√
ω

b†(ω)dω
)
|0〉

(B.7)

In order to make things simpler, we will introduce the symmetric
function κ

κ(t1, . . . , tn) =
∏
i<j

(itj − iti)Φn(t1, . . . , tn). (B.8)

We will suppose that this function possesses a Fourier transform

κ(ω1, . . . , ωn) =

∫
κ(t1, . . . , tn)

n∏
i=1

eiωiti dt1 · · · dtn. (B.9)
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And now we can extract relations between κ(ω1, . . . , ωn) and current,
through contributions at i = 0, . . . , n + 1 photons. The zero-photon
contribution tells us that κ(ω1 = · · · = ωn = 0) exists, the right hand
side of

κ(0, . . . , 0) =

√
vF
2π

n√
vF
a

n2

exp
(
1

2

∫ ∞

0

(
n2 − |ie,V (ω)|2

) dω
ω

)
(B.10)

being finite (this is because ie,V (0) = n, and ie,V (∞) = 0).
Using the symmmetry of κ, we can show that single-photon contribu-

tion expresses κ(ω1, 0, . . . , 0) in terms of ie,V (ω). We thus have

nκ(ω, 0, . . . , 0) = κ(0, . . . , 0)ie,V (ω). (B.11)

To simplify notations, we will introduce a sequence of functions of i =
1, . . . n variables, fi such that

fi(ω1, . . . , ωi) = κ(ω1, . . . ωi, 0, . . . , 0)/κ(0, . . . , 0) (B.12)

We will also write f1(ω) = f(ω). This way, f(0) = 1.
The contribution with i = 2, . . . , n photons expresses fi in terms of

fj with j < i, giving a recursive (though quite complicated) definition of
fi in terms of f(ω). Since the general case is quite complicated, we will
illustrate the method for the simpler n = 2 case.

B.1.1 n = 2 case

In the n = 2 case, we still have to identify contributions containing two
and three photons. As we said, the 2-photon contribution expresses f2
in terms of f :

f2(ω1, ω2) + f(ω1 + ω2) = 2f(ω1)f(ω2). (B.13)

Now we can use 3-photon contribution to obtain the following equation:

(f2(ω1 + ω2, ω3) + (circ. perm.))+f(ω1+ω2+ω3) = 4f(ω1)f(ω2)f(ω3),
(B.14)

which turns to be a functional equation for f once we reinject the equation
from 2-photon contribution:

(f(ω1+ω2)f(ω3)+(circ. perm.))−f(ω1+ω2+ω3) = 2f(ω1)f(ω2)f(ω3).
(B.15)
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We now want to solve this equation from minimal assumption on f .
It is reasonable to think that the current is continuous (or, at least,
continuous by piece). We will use this equation to extract a recurrent
sequence that we can solve, and use continuity to extend this solution
to real field. We introduce a parameter α > 0, that sole purpose is to
allow us the extension to the real field. We then choose n ∈ N and set
ω1 = αn and ω2 = ω3 = α. Thus, we have a linear recurrence relation
for each α, given by:

f(α(n+2))− 2f(α)f(α(n+1)) +
(
2f(α)2 − f(2α)

)
f(αn) = 0. (B.16)

Such an equation has solutions of two possible forms. It can either be
a sum of two exponentials with different parameters, or a first-order
polynomial times an exponential. In the last case, the polynomial
multiplying the exponential is necessarily a constant. This is because
right-hand side of eq. (B.15) would be of order 3 otherwise, whereas
left-hand side would be of order 2. We can thus write a general solution:

f(αn) = aα exp(αkαn) + bα exp(αqαn). (B.17)

with aα, bα, kα and qα complex parameters such that a+ b = 1 (due to
n = 0 behavior) and kα 6≡ qα[2iπ]. We now have to find if there are any
constraints on those parameters. To this, we will use eq. (B.15) and
identify coefficients that possess identical exponential factors, setting
ωi = αni. If we look at the terms in exp(αkα(n1 + n2 + n3))

3a2α − aα = 2a3α. (B.18)

whose solutions are aα ∈ {0, 1/2, 1} are quantized. Since we impose
continuity, the only possibility is that aα and bα does not depend on α.
It is the same for kα and qα (in the case where a = b = 1/2, it is possible
to have exchange between k and q, but it is unsignificant).

Finally, what we have demonstrated is that, for the Leviton n = 2,
the current is a linear combination of two Leviton n = 1 pulses, emitted
at t1, t2 and with widths τ1, τ2 (eventually equals):

ie,V (ω) = exp(iωt1) exp(−ωτ1) + exp(iωt2) exp(−ωτ2). (B.19)

B.2 Wavefunction of a Leviton train
We will call a Levitonoid a normalized wavefunction ψ(t) such that∑

l∈Z ψ(t− lT )ψ∗(t′ − lT ) is the excess electronic first-order coherence
generated by a train of Lorentzian pulses. As we will see, this wavefunc-
tion is not unique.
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The Moskalets Levitonoids

In a recent work [Moskalets, 2015], Moskalets has identified one possible
Levitonoid as:

ψ(t) =

√
τ0
π

1

t− iτ0

∞∏
n=1

t+ nT + iτ0
t+ nT − iτ0

(B.20)

where T = 1/f is the period and τ0 is the typical time width of the
excitation. This wavefunction has a spatial extention given by τ0. Let us
now discuss its energy content.

Using the identity

Γ(z) =
1

z

∞∏
n=1

(
1 + 1

n

)z
1 + z

n

(B.21)

we can rewrite the infinite product as a ratio of Γ functions, up to a
global phase

Γ((t− iτ0)/T )
Γ((t+ iτ0)/T )

=
t+ iτ0
t− iτ0

∞∏
n=1

(
1 +

1

n

)−2iτ0
(B.22a)

∞∏
n=1

t+ nT + iτ0
t+ nT − iτ0

(B.22b)

Thus, up to a global phase factor, we can rewrite:

ψ(t) =

√
τ0
π

1

t+ iτ0
Γ((t− iτ0)/T )
Γ((t+ iτ0)/T )

. (B.23)

We can compute the Fourier transform of this wavepacket, and we get
(up to another global phase factor):

ψ(ω) =
1√
N

H(ω)

(
2 sin νT

2

)2iτ0/T
e−ωnτ0 (B.24)

where ω = ωn + ν, with ν ∈ [0, 2πf [ and thus ωn = 2πfbω/2πfc.
N = f/vF (1− e−4πτ0/T ) is a normalization factor and H is the Heaviside
step function. We can then rewrite the wavefunction as a real part and
a periodic phase:

ψ(ω) =
1√
N

H(ω)eiθ(ω)e−ωnτ0 (B.25)
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with the phase satisfying the condition θ(ω + 2πf) = θ(ω). This expres-
sion shows that the electronic distribution function of this Levitonoid is
the staircase approximation of an exponential decay, with step widths
given by 2πf as expected from T -periodicity. Note that it does not de-
pend on the phase θ(ω).

B.2.1 Other Wannier functions for a Leviton train

Moskalets Levitonoids having a spreading τ0, they are naturally expected
to be among the minimally spread atoms of signals when fτ0 � 1, that
is when the Leviton spacing is large compared to their duration. But in
the opposite limit fτ0 & 1, this is certainly not the case. Let us discuss
for other Levitonoids and clarify the relation between our algorithm and
Moskalets work [Moskalets, 2015].

If a quantum electrical current has a time-reversal symmetry, which
is the case for a Leviton train, then there must be a set of Wannier
wavefunctions that possess this symmetry. This imposes that there is a
set of real valued Wannier functions in the frequency domain: ϕ(ω) ∈
R. If we can furthermore suppose that ϕ(ω) ≥ 0, the time-spreading
minimization problem becomes trivial and we find that, up to time-
translation by T , the minimal wavefunctions are the ones that possess
the time-reversal symmetry.

B.2.2 Minimally-spread Levitonoids

In the case of Levitonoids, we have seen in eq. (B.25) that the wavefunc-
tions can be written as the product of a real part and a phase part, the
phase part being periodic in time. Thus the minimization of eq. (2.40) is
realized when the minimal wavefunction has a constant phase. We can
set this global phase to zero, and thus we have the following wavefunction:

ϕ(ω) =
1√
N

H(ω)e−ωnτ0 (B.26)

This wavefunction is time-reversal invariant. In this case, the current of
one pulse is different from the current of one Leviton of duration τ0. The
time-domain expression for this wavepacket is:

ϕ(t) =
i√
N ′

1

t

1− e−2iπft

1− e−2πf(τ0+it) (B.27)
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The corresponding average current is then

i(t) ∝ sinc2(πft)
1− cos(2πft)/ cosh(2πfτ0)

(B.28)

The overlap between this wavepacket and a unique Leviton is given
by

|〈ϕtrain |ϕunique〉|2 =
1

πfτ0

1− e−2πfτ0

1 + e−2πfτ0
. (B.29)

The behavior when fτ0 � 1 is approached by

|〈ϕtrain |ϕunique〉|2 ' 1− (πfτ0)
2

6
(B.30)

making the Leviton approximation a fairly good approximation in this
case. When fτ0 � 1, we have, on the contrary

|〈ϕtrain |ϕunique〉|2 '
1

πfτ0
, (B.31)

the 1/πfτ0 behavior implying a quite slow decays.
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Appendix C

Splitting unitary matrices

In this appendix, we will introduce a decomposition for unitary matrices
useful when we partition equally the Hilbert space in two. In what
remains, we will consider a matrix S ∈ U2n, acting on a Hilbert space
H = H+ ⊗H−, where dimH+ = dimH− = n. The goal here is to show
that there exists an orthogonal change of basis P = P−P+ that acts
independently on H+ and H− in which we can write

PSP † =

u v

v −u

 ei(Θ−+Θ+) (C.1)

where u, v ∈ Mn are positive real diagonal matrices, Θ± are Hermitian
matrices of size n. The first block-column corresponds to the Hilbert
space H− and the second one corresponds to H+.

Generically, one can write the S matrix as

S =

S−− S−+

S+− S++

 . (C.2)

For the sake of simplicity, we will consider that each submatrix is in-
vertible. Other cases would correspond to either fully scattered modes
or fully reflected modes, which can be separated from the start without
much problems.

We will first introduce the polar decomposition of S−− = H−−eiθ− ,
where θ− is Hermitian and H−− is a positive semi-definite Hermitian
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matrix. This allows us to rewrite S as

S =

 H−− S−+

S+−e−iθ− S++

 eiθ− . (C.3)

H−− being positive semi-definite, we can write it as H−− = P †
−uP−,

where u is a diagonal, real-valued, positive matrix. This leads us to

P−SP
†
− =

 u S′
−+

S′
+− S++

 eiΘ− . (C.4)

where Θ− = P−θ−P
†
−, S′

+− = P−S+−e−iθ− and S′
−+ = S−+P

†
−. The first

matrix of the rhs must be unitary. Since u is diagonal, it imposes that
each column of S′

+− is orthogonal to each other. As such, we can rewrite
this matrix as a product of a unitary matrix and a diagonal positive real
matrix, S′

+− = P †
+v. Noting P = P−P+, we have shown

PSP † =

u S′′
−+

v S′
++

 eiΘ− . (C.5)

where S′′
−+ = S′

−+P
†
+, S′

++ = P+S++P
†
+.

We can now use the hermitian properties of unitary matrices to build
explicitly the constraints between u, v, S′

++ and S′′
−+. The orthogonality

constraint gives us
S′
++ = −(u/v)S′′

−+ (C.6)

where u/v is the diagonal matrix formed by uv−1. Conversely, the
normalization conditions give us

S′
++

†
(1n + (u/v)2)S′

++ = 1 (C.7)

Since u2 + v2 = 1, this shows that v−1S′
++ = eiΘ+ , where Θ+ is an

Hermitian matrix. Putting everything together, we have

PSP † =

u v

v −u

 ei(Θ−+Θ+). (C.8)

This is the property we wanted to show.
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This decomposition can also be useful to decompose a unitary trans-
formation into circuit containing only 2-qubit gates, in the spirit of
[Kitaev et al., 2002]. We produce a decomposition of a unitary matrix
into smaller unitary matrices (P±, eiΘ±) and a simple unitary matrix con-
stituted of matrices u and v. This last matrix can easily be expressed as
a product of single-qubit gates controlled by all other qubits. Conversely,
starting from a unitary matrix acting on n qubits, P± and eiΘ± can be
written as a unitary matrix acting on n − 1 qubits controlled by one
qubit. Then it is easy to come back to a circuit containing only 2-qubit
gates, using the arguments of [Kitaev et al., 2002, chapter 8].
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Appendix D

An effective long range
model for ν = 1

In this section, we present an analytical expression for the edge-magneto-
plasmon transmission coefficient in the ν = 1 case using a simple model
of Coulomb interaction based on discrete elements in the spirit of Büt-
tiker’s treatment of high-frequency quantum transport [Prêtre et al.,
1996]. Similar computations can be found in [Grenier, 2011; Bocquillon
et al., 2013b] and the present appendix, included here for completeness,
is a contribution by C. Cabart to [Cabart et al., 2017].

The starting point is that electrons within the interaction region see
the electrical potential U(x, t) given by a capacitive coupling inside a
finite-length region of size l thus making each electron see the potential
created by all the ones present in the interacting region:

U(x, t) =

0 if x /∈
[
− l

2 ,
l
2

]
1
C

∫ l
2

− l
2

n(y, t)dy else.
(D.1)

where the excess density of charges n is itself linked to the bosonic field φ
through eq. (3.47). Equation (3.48) can be recasted as a closed equation
on φ expressed in the frequency domain as

(−iω + vF∂x)φ(x, ω) =
e2

hC

(
φ

(
− l

2
, ω

)
− φ

(
l

2
, ω

))
. (D.2)

273



274 AN EFFECTIVE LONG RANGE MODEL FOR ν = 1 D

Expressing φ(x, ω) as eiωx/vFϕω(x) leads to

∂xϕω(x) =
e2

vFhC
e−iωx/vF

×
(

e−iωl/(2vF )ϕω

(
− l

2

)
− eiωl/(2vF )ϕω

(
l

2

)) (D.3)

which can be integrated over the whole interaction region to give us a
relation between ϕω

(
− l

2

)
and ϕω

(
l
2

)
. Finally, the solution reads

φ

(
l

2
, ω

)
= t(ω)φ

(
− l

2
, ω

)
(D.4)

where

t(ω) = eiωl/vF 1 +A(ω, l)e−iωl/(2vF )

1 +A(ω, l)eiωl/(2vF )
(D.5a)

A(ω, l) =
4e2/C

hvF /l
sinc

(
ωl

2vF

)
(D.5b)

where we recognize the kinetic energy scale hvF /l as well as the dimen-
sionless ratio α = e2l/ChvF of the electrostatic energy e2/C to this ki-
netic energy scale, which quantifies the strength of Coulomb interactions
in this system. Note that, at least for sufficiently long edge channels, this
coupling constant does not depend on the length l since C also scales as
l.

As expected, the transmission coefficient t(ω) is of modulus 1 because
no energy can be lost in a ν = 1 setup without any dynamical environment.
The quantity of interest is therefore the phase of t(ω).

In the limit where Coulomb interaction effect can be neglected (α→
0), t(ω) = eiωl/vF showing that the bare Fermi velocity is recovered. The
opposite limit of ultrastrong Coulomb interactions (α → ∞) leads to
t(ω) = 1, that is an infinite edge-magnetoplasmon velocity. However, at
fixed coupling α, the edge-magnetoplasmon velocity tends to v∞ = vF
when ωl/vF � 1. At low frequency, we find that the time of flight
of edge magnetoplasmons is renormalized thus leading to an increased
renormalized plasmon velocity

v0
v∞

= 1 +
4e2/C

hv∞/l
. (D.6)

compared to the velocity at high frequency which is the bare Fermi
velocity vF . Let us remind that C being the capacitance of the interac-
tion region that is roughly similar to a 1D wire, C ' 4πε0εrl up to a
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geometrical factor for large l, that is when boundary effects are small.
Consequently, α does not depend on l but behaves as [Grenier et al.,
2013]:

α '
αqed
εr

× c

vF
× (Geometrical Factor) (D.7)

where αqed denotes the fine-structure constant, εr the relative permittivity
of the material and vF the bare Fermi velocity. Using vF ' 3 × 105 m/s
and εr ' 10 for AsGa, we find

α ' 0.73× (Geometrical Factor) (D.8)

Assuming a geometrical factor of order 1, this gives a velocity for the
low-energy magnetoplasmons of the order of v0 ∼ 1.2 × 106 m/s which is
compatible to what is observed in ν = 2 edge channel systems Kamata
et al. [2010]. Let me remind that the edge-magnetoplasmon velocity
depends on the details of the electrical potential seen by electrons near
the edge of the 2DEG and therefore of the conception of the sample
(electrostatic gating being a part of this). This is precisely used in the
above reference to modulate it by polarising gates.

For intermediate values of the coupling, as shown on fig. 3.8, the
edge-magnetoplasmon velocity deduced from t(ω) presents a decay from
v0 to a regime with small oscillations (for a . 2) above the asymptotic
value of vF .
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Appendix E

Technical stuff for path
integrals

Path integral is, at the same time, very beautiful, and yet, it usually ends
up in quite nightmarish expression. That is why this appendix exists.

E.1 Path integral for open quantum system

In section 4.2.1, we introduce the notion of driven evolution for the
environment conditioned to a trajectory γS followed by the system. It is
actually possible to show it through path integral. For this, we will first
need to write down a path integral for the composed system. For this, we
introduce γ = γS ⊗ γE , where γS is a path in a chosen observable for the
system S and γE is a path in a chosen observable for the environment.
Now, if we write down the combined evolution, we have

|Ψ(tf )〉 =
∫

〈γS(ti)|ψS(ti)〉 〈γE(ti)|ψE(ti)〉AS⊗E [γS , γE ]

|γS(tf )〉 ⊗ |γE(tf )〉 D[γE ]D[γS ],

(E.1)

where AS⊗E is the amplitude associated with the full dynamics.
Of course, it is possible to separate the action in three terms: one

concerning the system alone, another concerning the environment alone,
and a part corresponding to the interaction between the system and the
environment. We can thus rewrite

AS⊗E [γS , γE ] = AS [γS ]AE [γE ]Aint[γS , γE ] (E.2)
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If we reorganize terms a little bit, we find

|Ψ(tf )〉 =
∫

〈γS(ti)|ψS(ti)〉AS [γS ] |γS(tf )〉(∫
〈γE(ti)|ψE(ti)〉Aint[γS , γE ]AE [γE ] |γE(tf )〉 D[γE ]

)
D[γS ],

(E.3)

Now, we can introduce the state of the environment conditioned on
trajectory γS followed by the system as

|E [γS ]〉 =
∫

〈γE(ti)|ψE(ti)〉Aint[γS , γE ]AE [γE ] |γE(tf )〉 D[γE ] (E.4)

Of course, we need to be sure that this state is well normalized. But
actually, we can see the factor Aint[γS , γE ]AE [γE ] as an action for the
environment, forced classically by the trajectory γS . So what we have is
still a path integral and should then conserve the normalization of the
state.

E.2 Harmonic bath linearly coupled to the sys-
tem

In section 4.2.2, we derived the very general equation (4.16):

F̂eq[γ+, γ−;λ] =
1

Zi
tr
(

eiλHEUE [γ+]e−(β+iλ)HEU †
E [γ−]

)
(E.5)

Here we will give the details that allow us to reach eq. (4.21). We will
keep the same notation. The first thing we need to do is to express the
influence functional with displacement operator

F̂eq[γ+, γ−;λ] =
ei(θ[γ+]−θ[γ−])

tr (e−βHE )

× tr
(

eiλHED(Λ[γ+])e−(β+iλ)HED(−Λ[γ−])
)
.

(E.6)

The objective here, is to express the trace through the formula [Cahill
and Glauber, 1969]:

tr
(
zND

(
ξ, ξ̄
))

=
e−

(z+1)ξξ̄
2(1−z)

1− z
(E.7)
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where we introduced D
(
ξ, ξ̄
)
, the generalized displacement operators:

D
(
ξ, ξ̄
)
= eξa†−ξ̄a (E.8)

Lets first start with a single mode picture. We will need to commute
operators in the form zN with displacement operators, N being the
number operator associated to the mode we are considering, here coming
from the hamiltonian. We have the following relations:

zNa†z−N = za† zNaz−N = z−1a (E.9)

It implies on displacement operators that

zND(λ) = D
(
zλ, z−1λ∗

)
zN =

|z|=1
D (zλ) zN (E.10)

Using the traditional composition relation for displacement operators

D(λ2)D(λ1) = D(λ1 + λ2)ei=(λ2λ∗
1) (E.11)

We can find an expression for the generating functional

F̂eq[γ+, γ−;λ] =
ei(θ[γ+]−θ[γ−])

tr (e−βHE )∏
α

tr
(

e−βHα
ED

(
ei~λωαΛα[γ+]− Λα[γ−]

))
× exp

(
i=
(
Λ∗
α[γ−]Λα[γ+]ei~λωα

)) (E.12)

that we can rewrite

F̂eq[γ+, γ−;λ] = ei(θ[γ+]−θ[γ−])∏
α

exp
(
−(1 + 2n̄α)

∣∣∣ei~λωαΛα[γ+]− Λα[γ−]
∣∣∣2 /2)

× exp
(

i=
(
Λ∗
α[γ−]Λα[γ+]ei~λωα

))
(E.13)

By setting λ = 0, we find the Feynman–Vernom influence functional at
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temperature T

FFV,T [γ+, γ−] = F̂eq[γ+, γ−;λ = 0] (E.14a)
= ei(θ[γ+]−θ[γ−])∏

α

exp
(
−(1 + 2n̄α)

(
|Λα[γ+]|2 + |Λα[γ−]|2

)
/2
)

× exp ((1 + n̄α)Λα[γ+]Λ
∗
α[γ−])

× exp (n̄αΛ
∗
α[γ+]Λα[γ−])

(E.14b)

By factorizing Feynman–Vernom influence functional, we finally get
eq. (4.21):

F̂eq[γ+, γ−;λ] = FFV,T [γ+, γ−]

×
∏
α

exp
(
(1 + n̄α)(ei~λωα − 1)Λα[γ+]Λ

∗
α[γ−]

)
× exp

(
n̄α(e−i~λωα − 1)Λ∗

α[γ+]Λα[γ−]
)
.

(E.15)

E.3 Two trajectories, single-mode environment

Here you will find the technical details for the derivation of probability
density eqs. (4.28) and (4.29) derived in section 4.2.2 in case of a single-
mode environment, when the system is constrained to follow either one
of two quasi-classical trajectories. We recall here that we splitted the
heat probability density into two parts

p(Q) = pcl(Q) + pqu(Q) (E.16)

where pcl(Q) arises from classical couples of trajectories (γ+ = γ−), and
pqu(Q) arises from quantum couples of trajectories (γ+ 6= γ−).

E.3.1 Classical couple of trajectories

We will start with classical couple of trajectories. We have thus γi =
γ+ = γ−.

Feq[γi, γi;λ] = exp
(
Ni(1 + n̄)(ei~λω − 1)

)
exp

(
Nin̄(e−i~λω − 1)

)
(E.17)
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This expression reminds us that the Fourier transform of Poisson law
is:

px(n) = e−xx
n

n!
p̂x(z) =

∑
n∈N

einzpx(n) = exp
(
x(eiz − 1)

)
(E.18)

where n ∈ N. We will also introduce a Poisson distribution for the
negative values of n:

p′x(n) = px(−n) p̂′x(z) = p̂x(−z) = exp
(
x(e−iz − 1)

)
(E.19)

Generating functional is thus a product of Poisson distribution.

F̂eq[γi, γi;λ] = p̂Ni(1+n̄)(~λω)p̂′Nin̄(~λω) (E.20)

This gives, in energy space:

Feq[γ, γ;Q] =
[
pN(1+n̄) ∗ p′Nn̄

]( Q

~ω

)
(E.21)

But this convolution product is what we would find if we consider a
random variable Z = X −Y , where X and Z would be random variables
following Poisson distribution with parameters x and z. In this case,
Z would be described by a distribution f(n;x, y) called the Skellam
distribution.

f(n;x, y) = [px ∗ p′y](n) (E.22)

It is also possible to give an explicit expression for Skellam distribution

f(n;x, y) = e−(x+y)

(
x

y

)n/2

I|n|(2
√
xy) (E.23)

where In is a modified Bessel function of first kind

In(x) =
∑
k

1

k!(k + n)!

(x
2

)2k+n
. (E.24)

Finally, by summing on both trajectories, we get eq. (4.28).
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E.3.2 Quantum trajectories

Now let us look at quantum trajectories. We will here consider (γ+, γ−) =
(γ1, γ2).

F̂eq[γ1, γ2;λ] = ei∆θ exp
(
−(1 + 2n̄)

N1 +N2

2

)
(E.25a)

exp
(√

N1N2

(
(1 + n̄)ei∆φ + n̄e−i∆φ

))
(E.25b)

p̂(1+n̄B)
√
N1N2ei∆φ(~ωλ)p̂′n̄B

√
N1N2e−i∆φ(~ωλ)

(E.25c)

Once Fourier transformed, we get

Feq[γ1, γ2;Q] = ei∆θ exp
(
−(1 + 2n̄B)

N1 +N2

2

)
(E.26a)

exp
(√

N1N2

(
(1 + n̄)ei∆φ + n̄e−i∆φ

))
(E.26b)

f

(
Q

~ω
;
√
N1N2(1 + n̄)ei∆φ,

√
N1N2n̄e−i∆φ

)
(E.26c)

If we use the following property of Skellam distribution

f(n; r1eiθ, r2e−iθ) = exp
(
r1(1− eiθ) + r2(1− e−iθ)

)
einθf(n; r1, r2).

(E.27)
we obtain

Feq[γ1, γ2;Q] =ei∆θe−(1+2n̄B)
(√

N1−
√

N2
)2

2

eiQ∆φ/~ωf

(
Q

~ω
;
√
N1N2(1 + n̄),

√
N1N2n̄

) (E.28)

To obtain eq. (4.29), we only need to take into account the phase due
to the dynamics of the system. Then summing over all possible couples
of trajectories comes down to take two times the real part of the obtained
expression.
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Autopsy of a quantum electrical current

Quantum physics experiments have reached a level of precision and
control that allows quantum state engineering for many systems. This
has led to the birth of electron quantum optics, an emerging field which
aims at generating, manipulating and characterizing quantum electrical
currents built from few-electron excitations propagating within ballistic
quantum conductors. This is challenging since it is generically impossible
in practice to fully characterize the many-body state of a beam containing
indistinguishable electrons. This thesis presents new quantum signal
processing approaches for accessing, at least partially, to the quantum
many-body state of quantum electrical currents.

A first approach is to access such a state at few-particle levels through
electronic coherences. We will thus present a new representation of single-
electron coherence in terms of electronic “atoms of signal”. Combining this
signal processing algorithm to HOM tomography enables us to present the
first autopsy, wavefunction by wavefunction, of an experimental electrical
quantum current.

Another method is to look for indicators giving information directly
at the many-body level. We will investigate the radiation emitted by a
quantum conductor and address the problem of decoherence of a general
single-electron excitation. Finally, we will look at the heat deposited by
a mesoscopic quantum system, leading to a quantum version of Joule
heating and discuss how it gives an insight on the many-body state of
the electron fluid.

Keywords: electron quantum optics, quantum signal processing, quan-
tum coherence
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